If [tex]\tan \theta = -\frac{3}{8}[/tex], which expression is equivalent to [tex]\cot \theta[/tex]?

A. [tex]\frac{1}{-\frac{3}{8}}[/tex]
B. [tex]-\frac{3}{8} + 1[/tex]
C. [tex]\sqrt{1+\left(-\frac{8}{3}\right)^2}[/tex]
D. [tex]\left(-\frac{3}{8}\right)^2 + 1[/tex]



Answer :

To find an expression equivalent to [tex]\(\cot \theta\)[/tex] given [tex]\(\tan \theta = -\frac{3}{8}\)[/tex], we need to use the relationship between tangent and cotangent. Cotangent is the reciprocal of the tangent, which means:

[tex]\[ \cot \theta = \frac{1}{\tan \theta} \][/tex]

Let's apply this relationship to the given value of [tex]\(\tan \theta\)[/tex]:

[tex]\[ \tan \theta = -\frac{3}{8} \][/tex]

So, we will take the reciprocal of [tex]\(\tan \theta\)[/tex]:

[tex]\[ \cot \theta = \frac{1}{-\frac{3}{8}} \][/tex]

This expression can be simplified by recognizing that taking the reciprocal of a fraction involves flipping the numerator and denominator:

[tex]\[ \cot \theta = -\frac{8}{3} \][/tex]

Hence, the expression [tex]\(\frac{1}{-\frac{3}{8}}\)[/tex] is equivalent to [tex]\(\cot \theta\)[/tex].

Thus, the correct answer is:

[tex]\[ \boxed{\frac{1}{-\frac{3}{8}}} \][/tex]