Answer :
To find the value of [tex]\( x \)[/tex] in the equation [tex]\( 2x - 3 = 9 - 4x \)[/tex], we'll solve the equation step by step.
1. Start with the given equation:
[tex]\[ 2x - 3 = 9 - 4x \][/tex]
2. Add [tex]\( 4x \)[/tex] to both sides of the equation to begin isolating [tex]\( x \)[/tex]:
[tex]\[ 2x + 4x - 3 = 9 \][/tex]
3. Combine the [tex]\( x \)[/tex]-terms on the left side:
[tex]\[ 6x - 3 = 9 \][/tex]
4. Add 3 to both sides to further isolate the [tex]\( x \)[/tex]-term:
[tex]\[ 6x - 3 + 3 = 9 + 3 \][/tex]
5. Simplify both sides:
[tex]\[ 6x = 12 \][/tex]
6. Divide both sides by 6 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{12}{6} \][/tex]
7. Simplify the right side:
[tex]\[ x = 2 \][/tex]
So, the value of [tex]\( x \)[/tex] is [tex]\( 2 \)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{2} \][/tex]
1. Start with the given equation:
[tex]\[ 2x - 3 = 9 - 4x \][/tex]
2. Add [tex]\( 4x \)[/tex] to both sides of the equation to begin isolating [tex]\( x \)[/tex]:
[tex]\[ 2x + 4x - 3 = 9 \][/tex]
3. Combine the [tex]\( x \)[/tex]-terms on the left side:
[tex]\[ 6x - 3 = 9 \][/tex]
4. Add 3 to both sides to further isolate the [tex]\( x \)[/tex]-term:
[tex]\[ 6x - 3 + 3 = 9 + 3 \][/tex]
5. Simplify both sides:
[tex]\[ 6x = 12 \][/tex]
6. Divide both sides by 6 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{12}{6} \][/tex]
7. Simplify the right side:
[tex]\[ x = 2 \][/tex]
So, the value of [tex]\( x \)[/tex] is [tex]\( 2 \)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{2} \][/tex]