What is the value of [tex]$x$[/tex] in the equation [tex]$0.2(x+1) + 0.5x = -0.3(x-4)$[/tex]?

A. [tex]-\frac{7}{2}[/tex]
B. [tex]-1[/tex]
C. [tex]1[/tex]
D. [tex]\frac{7}{2}[/tex]



Answer :

Let's solve the equation [tex]\(0.2(x+1) + 0.5x = -0.3(x-4)\)[/tex] step by step.

1. Distribute the constants inside the parentheses:

[tex]\[ 0.2(x + 1) + 0.5x = -0.3(x - 4) \][/tex]

[tex]\[ 0.2x + 0.2 + 0.5x = -0.3x + 1.2 \][/tex]

2. Combine like terms on the left-hand side:

[tex]\[ 0.2x + 0.5x + 0.2 = -0.3x + 1.2 \][/tex]

[tex]\[ 0.7x + 0.2 = -0.3x + 1.2 \][/tex]

3. Move all terms involving [tex]\(x\)[/tex] to one side and constants to the other side. Add [tex]\(0.3x\)[/tex] to both sides to eliminate [tex]\(-0.3x\)[/tex] from the right-hand side:

[tex]\[ 0.7x + 0.3x + 0.2 = 1.2 \][/tex]

[tex]\[ 1.0x + 0.2 = 1.2 \][/tex]

4. Subtract 0.2 from both sides to isolate [tex]\(x\)[/tex]:

[tex]\[ 1.0x = 1.2 - 0.2 \][/tex]

[tex]\[ 1.0x = 1.0 \][/tex]

5. Divide both sides by 1.0 to solve for [tex]\(x\)[/tex]:

[tex]\[ x = \frac{1.0}{1.0} \][/tex]

[tex]\[ x = 1 \][/tex]

Thus, the value of [tex]\(x\)[/tex] is [tex]\(1\)[/tex].

The answer is [tex]\(\boxed{1}\)[/tex].