What is the value of [tex]$x$[/tex] in the equation [tex]$6(x+1) - 5x = 8 + 2(x-1)$[/tex]?

A. 0
B. [tex][tex]$\frac{5}{4}$[/tex][/tex]
C. [tex]$\frac{7}{4}$[/tex]
D. 12



Answer :

Let's solve the equation step-by-step to find the value of [tex]\( x \)[/tex] in the given equation:

[tex]\[ 6(x + 1) - 5x = 8 + 2(x - 1) \][/tex]

First, we need to expand both sides:

1. Expand the left side:

[tex]\[ 6(x + 1) - 5x \][/tex]
[tex]\[ = 6x + 6 - 5x \][/tex]
[tex]\[ = x + 6 \][/tex]

2. Expand the right side:

[tex]\[ 8 + 2(x - 1) \][/tex]
[tex]\[ = 8 + 2x - 2 \][/tex]
[tex]\[ = 2x + 6 \][/tex]

Now, rewrite the equation with the expanded terms:

[tex]\[ x + 6 = 2x + 6 \][/tex]

Next, we want to isolate [tex]\( x \)[/tex] on one side of the equation. Subtract [tex]\( x \)[/tex] from both sides:

[tex]\[ 6 = x + 6 \][/tex]

Then, subtract 6 from both sides:

[tex]\[ 0 = x \][/tex]

So, the value of [tex]\( x \)[/tex] is [tex]\( 0 \)[/tex].

Thus, the correct answer is:

[tex]\[ 0 \][/tex]