If [tex]x \Rightarrow y[/tex] and [tex]y \Rightarrow z[/tex], which statement must be true?

A. [tex]\neg x \Rightarrow z[/tex]
B. [tex]x \Rightarrow z[/tex]
C. [tex]\neg x \Rightarrow \neg z[/tex]
D. [tex]z = x[/tex]



Answer :

To determine which statement must be true given that [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex], let's analyze the implications step by step according to the properties of logical statements.

1. Given: [tex]\( x \Rightarrow y \)[/tex]
- This means if [tex]\( x \)[/tex] is true, then [tex]\( y \)[/tex] must also be true.

2. Given: [tex]\( y \Rightarrow z \)[/tex]
- This means if [tex]\( y \)[/tex] is true, then [tex]\( z \)[/tex] must also be true.

From the above two implications, we use the property of transitivity of implications:

- The transitivity of logical implications states that if [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex], then [tex]\( x \Rightarrow z \)[/tex].

Let's analyze each of the given choices:

- A. [tex]\( \neg x \Rightarrow z \)[/tex]
- This statement is not necessarily true. From [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex], we cannot deduce [tex]\( \neg x \Rightarrow z \)[/tex].

- B. [tex]\( x \Rightarrow z \)[/tex]
- This statement is true because, by transitivity, if [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex], then [tex]\( x \Rightarrow z \)[/tex].

- C. [tex]\( \neg x \Rightarrow \neg z \)[/tex]
- This statement is not necessarily true either, as [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex] do not imply [tex]\( \neg x \Rightarrow \neg z \)[/tex].

- D. [tex]\( z = x \)[/tex]
- This statement is not necessarily true. The implications [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex] do not imply [tex]\( z \)[/tex] is equivalent to [tex]\( x \)[/tex].

Therefore, the correct statement that must be true given the initial conditions is:
- B. [tex]\( x \Rightarrow z \)[/tex].