What is the solution to the equation [tex]$9(w-4)-7w=5(3w-2)$[/tex]?

A. [tex]w=-\frac{34}{13}[/tex]
B. [tex]w=-2[/tex]
C. [tex]w=\frac{6}{13}[/tex]
D. [tex]w=26[/tex]



Answer :

Let's solve the equation step-by-step:

Given the equation:
[tex]\[ 9(w - 4) - 7w = 5(3w - 2) \][/tex]

1. Distribute the constants inside the parentheses:
[tex]\[ 9(w - 4) = 9w - 36 \][/tex]
[tex]\[ 5(3w - 2) = 15w - 10 \][/tex]

Now the equation looks like:
[tex]\[ 9w - 36 - 7w = 15w - 10 \][/tex]

2. Combine like terms on the left side of the equation:
[tex]\[ (9w - 7w) - 36 = 15w - 10 \][/tex]
[tex]\[ 2w - 36 = 15w - 10 \][/tex]

3. Move all terms involving [tex]\( w \)[/tex] to one side and constant terms to the other side of the equation:
[tex]\[ 2w - 15w = 36 - 10 \][/tex]
[tex]\[ -13w = 26 \][/tex]

4. Solve for [tex]\( w \)[/tex] by isolating the variable:
[tex]\[ w = \frac{26}{-13} \][/tex]
[tex]\[ w = -2 \][/tex]

Thus, the solution to the equation [tex]\( 9(w - 4) - 7w = 5(3w - 2) \)[/tex] is:
[tex]\[ w = -2 \][/tex]

So out of the given options:
- [tex]\( w = -\frac{34}{13} \)[/tex]
- [tex]\( w = -2 \)[/tex]
- [tex]\( w = \frac{6}{13} \)[/tex]
- [tex]\( w = 26 \)[/tex]

The correct answer is:
[tex]\[ w = -2 \][/tex]