The chart represents a data set's given values and residual values.

\begin{tabular}{|c|c|c|c|}
\hline
[tex]$x$[/tex] & Given & Predicted & Residual \\
\hline
1 & 6 & 7 & -1 \\
\hline
2 & 12 & 11 & 1 \\
\hline
3 & 13 & 15 & [tex]$g$[/tex] \\
\hline
4 & 20 & 19 & [tex]$h$[/tex] \\
\hline
\end{tabular}

Which are the missing residual values?

A. [tex]$g=2$[/tex] and [tex]$h=-1$[/tex]

B. [tex]$g=28$[/tex] and [tex]$h=39$[/tex]

C. [tex]$g=-2$[/tex] and [tex]$h=1$[/tex]

D. [tex]$g=-28$[/tex] and [tex]$h=-39$[/tex]



Answer :

Let's find the missing residual values step-by-step.

1. We have the given values and predicted values as follows:
- For [tex]\(x = 1\)[/tex]: Given = 6, Predicted = 7
- For [tex]\(x = 2\)[/tex]: Given = 12, Predicted = 11
- For [tex]\(x = 3\)[/tex]: Given = 13, Predicted = 15
- For [tex]\(x = 4\)[/tex]: Given = 20, Predicted = 19

2. The residual value is calculated as the difference between the given value and the predicted value:
- Residual = Given - Predicted

3. Let's calculate the residuals for each [tex]\(x\)[/tex]:

For [tex]\(x = 1\)[/tex]:
[tex]\[ \text{Residual} = 6 - 7 = -1 \][/tex]

For [tex]\(x = 2\)[/tex]:
[tex]\[ \text{Residual} = 12 - 11 = 1 \][/tex]

For [tex]\(x = 3\)[/tex]:
[tex]\[ g = 13 - 15 = -2 \][/tex]

For [tex]\(x = 4\)[/tex]:
[tex]\[ h = 20 - 19 = 1 \][/tex]

4. Thus, the values of [tex]\(g\)[/tex] and [tex]\(h\)[/tex] are:
[tex]\[ g = -2 \quad \text{and} \quad h = 1 \][/tex]

So, the correct answer is:
[tex]\(g = -2\)[/tex] and [tex]\(h = 1\)[/tex].

Thus, the correct choice is:
[tex]\[ \boxed{g = -2 \quad \text{and} \quad h = 1} \][/tex]