Melissa collected the data in the table below.

When [tex]$x=4$[/tex], what is the residual?

\begin{tabular}{|c|c|c|c|}
\hline
[tex]$x$[/tex] & Given & Predicted & Residual \\
\hline
1 & 2 & 1 & 1 \\
\hline
2 & 3 & 4 & -1 \\
\hline
3 & 8 & 7 & 1 \\
\hline
4 & 9 & 10 & ? \\
\hline
\end{tabular}

A. [tex]$-3$[/tex]
B. [tex]$-1$[/tex]
C. 1
D. 3



Answer :

To find the residual for [tex]\( x = 4 \)[/tex], let’s analyze the given and predicted values from the table:

1. We are provided with the given value for [tex]\( x = 4 \)[/tex]: 9.
2. We are also provided with the predicted value for [tex]\( x = 4 \)[/tex]: 10.

The residual is calculated using the formula:
[tex]\[ \text{Residual} = \text{Given} - \text{Predicted} \][/tex]

We substitute the given and predicted values into the formula:
[tex]\[ \text{Residual} = 9 - 10 \][/tex]

This simplifies to:
[tex]\[ \text{Residual} = -1 \][/tex]

Thus, when [tex]\( x = 4 \)[/tex], the residual is [tex]\(-1\)[/tex].

Therefore, the correct answer is:
[tex]$\boxed{-1}$[/tex]