To find the residual for [tex]\( x = 4 \)[/tex], let’s analyze the given and predicted values from the table:
1. We are provided with the given value for [tex]\( x = 4 \)[/tex]: 9.
2. We are also provided with the predicted value for [tex]\( x = 4 \)[/tex]: 10.
The residual is calculated using the formula:
[tex]\[ \text{Residual} = \text{Given} - \text{Predicted} \][/tex]
We substitute the given and predicted values into the formula:
[tex]\[ \text{Residual} = 9 - 10 \][/tex]
This simplifies to:
[tex]\[ \text{Residual} = -1 \][/tex]
Thus, when [tex]\( x = 4 \)[/tex], the residual is [tex]\(-1\)[/tex].
Therefore, the correct answer is:
[tex]$\boxed{-1}$[/tex]