Answered

Simplify the following radical expression.

[tex]\[
(6+4 \sqrt{3})(2-3 \sqrt{3}) \\
\text{[?] + \square \sqrt{\square}}
\][/tex]



Answer :

To simplify the expression [tex]\((6 + 4\sqrt{3})(2 - 3\sqrt{3})\)[/tex], we will use the distributive property, often referred to as the FOIL method (First, Outer, Inner, Last). Here are the steps:

1. Multiply the First terms:
[tex]\[ 6 \times 2 = 12 \][/tex]

2. Multiply the Outer terms:
[tex]\[ 6 \times (-3\sqrt{3}) = -18\sqrt{3} \][/tex]

3. Multiply the Inner terms:
[tex]\[ 4\sqrt{3} \times 2 = 8\sqrt{3} \][/tex]

4. Multiply the Last terms:
[tex]\[ 4\sqrt{3} \times (-3\sqrt{3}) \][/tex]
Simplify the multiplication within the square root:
[tex]\[ 4 \times -3 \times (\sqrt{3} \times \sqrt{3}) = 4 \times -3 \times 3 = -36 \][/tex]

Next, we combine all these products:

- Constant terms:
[tex]\[ 12 - 36 = -24 \][/tex]

- Square root terms:
[tex]\[ -18\sqrt{3} + 8\sqrt{3} = -10\sqrt{3} \][/tex]

Therefore, combining the constant term and the square root term, the simplified expression is:
[tex]\[ \boxed{-24 - 10\sqrt{3}} \][/tex]