\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-2 & -8 \\
\hline
-1 & 0 \\
\hline
0 & 0 \\
\hline
1 & -2 \\
\hline
2 & 0 \\
\hline
3 & 12 \\
\hline
\end{tabular}

Which lists all of the [tex]$y$[/tex]-intercepts of the continuous function in the table?

A. [tex]$(0,0)$[/tex]

B. [tex]$(-1,0),(2,0)$[/tex]

C. [tex]$(-1,0),(0,0)$[/tex]

D. [tex]$(-1,0),(0,0),(2,0)$[/tex]



Answer :

To identify the [tex]\( y \)[/tex]-intercepts of the continuous function given the table, we look for all points where the function value [tex]\( f(x) \)[/tex] is equal to zero. The [tex]\( y \)[/tex]-intercept of a function is where the function crosses the [tex]\( y \)[/tex]-axis, which happens when the [tex]\( y \)[/tex]-coordinate (or [tex]\( f(x) \)[/tex]) is zero.

Here's a step-by-step process:

1. Check all the [tex]\( x \)[/tex] values in the table and their corresponding [tex]\( f(x) \)[/tex] values:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -2 & -8 \\ \hline -1 & 0 \\ \hline 0 & 0 \\ \hline 1 & -2 \\ \hline 2 & 0 \\ \hline 3 & 12 \\ \hline \end{array} \][/tex]

2. Identify the points in the table where [tex]\( f(x) = 0 \)[/tex]:
- For [tex]\( x = -1 \)[/tex], [tex]\( f(x) = 0 \)[/tex]
- For [tex]\( x = 0 \)[/tex], [tex]\( f(x) = 0 \)[/tex]
- For [tex]\( x = 2 \)[/tex], [tex]\( f(x) = 0 \)[/tex]

3. List the points where [tex]\( f(x) = 0 \)[/tex]. These are [tex]\( y \)[/tex]-intercepts:
- [tex]\( (-1, 0) \)[/tex]
- [tex]\( (0, 0) \)[/tex]
- [tex]\( (2, 0) \)[/tex]

Hence, the correct list of all [tex]\( y \)[/tex]-intercepts of the continuous function in the table is [tex]\( (-1,0), (0,0), (2,0) \)[/tex].

The correct answer is:
[tex]\( (-1,0), (0,0), (2,0) \)[/tex]