\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-2 & 15 \\
\hline
-1 & 10 \\
\hline
0 & 5 \\
\hline
1 & 0 \\
\hline
2 & -5 \\
\hline
3 & -10 \\
\hline
\end{tabular}

Which is the [tex]$y$[/tex]-intercept of the continuous function in the table?

A. [tex]$(5,0)$[/tex]

B. [tex]$(0,1)$[/tex]

C. [tex]$(0,5)$[/tex]

D. [tex]$(1,0)$[/tex]



Answer :

To find the [tex]\( y \)[/tex]-intercept of the continuous function presented in the table, we need to identify the value of the function when [tex]\( x = 0 \)[/tex]. This is because the [tex]\( y \)[/tex]-intercept is the point where the graph of the function crosses the [tex]\( y \)[/tex]-axis.

Let's look at the table of values provided:

[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $f(x)$ \\ \hline -2 & 15 \\ \hline -1 & 10 \\ \hline 0 & 5 \\ \hline 1 & 0 \\ \hline 2 & -5 \\ \hline 3 & -10 \\ \hline \end{tabular} \][/tex]

From the table, we see that when [tex]\( x = 0 \)[/tex], the value of [tex]\( f(x) \)[/tex] (or [tex]\( y \)[/tex]) is 5. Therefore, the coordinates of the [tex]\( y \)[/tex]-intercept are [tex]\((0, 5)\)[/tex].

This corresponds to the point [tex]\((0, 5)\)[/tex] in the list of possible answers.

Thus, the correct answer is:
[tex]\[ \boxed{(0,5)} \][/tex]