Which is the equation for a circle with center at [tex](-2,-4)[/tex] that passes through the point [tex](3,8)[/tex]?

[tex]\[
\begin{array}{l}
A. (x-2)^2+(y+4)^2=144 \\
B. (x-2)^2+(y+4)^2=169 \\
C. (x+2)^2+(y+4)^2=144 \\
D. (x+2)^2+(y+4)^2=169
\end{array}
\][/tex]



Answer :

To find the equation of a circle with a given center and a point through which it passes, we can follow these steps:

1. Identify the center of the circle: The center is given as [tex]\((-2, -4)\)[/tex].

2. Identify a point on the circle: The point is given as [tex]\((3, 8)\)[/tex].

3. Calculate the radius of the circle: The radius is the distance between the center [tex]\((-2, -4)\)[/tex] and the point [tex]\((3, 8)\)[/tex]. We use the distance formula to compute this distance.
[tex]\[ \text{Distance (radius)} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Substituting the given coordinates:
[tex]\[ \text{radius} = \sqrt{(3 - (-2))^2 + (8 - (-4))^2} \][/tex]
Simplifying inside the square root:
[tex]\[ \text{radius} = \sqrt{(3 + 2)^2 + (8 + 4)^2} = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \][/tex]

4. Write the equation of the circle: The standard form for the equation of a circle is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Here, [tex]\((h, k)\)[/tex] is the center [tex]\((-2, -4)\)[/tex], and [tex]\(r\)[/tex] is the radius [tex]\(13\)[/tex].

5. Substitute the center coordinates and radius into the circle equation:
[tex]\[ (x - (-2))^2 + (y - (-4))^2 = 13^2 \][/tex]
Simplifying:
[tex]\[ (x + 2)^2 + (y + 4)^2 = 169 \][/tex]

Therefore, the equation of the circle is:
[tex]\[ (x + 2)^2 + (y + 4)^2 = 169 \][/tex]

The correct answer from the provided options is:
[tex]\[ (x+2)^2+(y+4)^2=169 \][/tex]