Answer :
To determine which step is incorrect, let’s analyze the expression step-by-step.
1. Step 1: [tex]\( -3(2 - 3 \cdot 5) - 4 \div 4 \)[/tex]
- Calculate inside the parentheses first: [tex]\( 2 - 3 \cdot 5 = 2 - 15 = -13 \)[/tex]
- So, it simplifies to: [tex]\( -3(-13) - 4 \div 4 \)[/tex]
2. Step 2: [tex]\( -3(2 - 15) - 4 \div 4 \)[/tex]
- Already simplified from Step 1, it should be: [tex]\( -3(-13) - 4 \div 4 \)[/tex]
3. Step 3: [tex]\( -3(-13) - 4 \div 4 \)[/tex]
- Multiply [tex]\(-3\)[/tex] and [tex]\(-13\)[/tex]: [tex]\( -3 \cdot (-13) = 39 \)[/tex]
- So, it simplifies to: [tex]\( 39 - 4 \div 4 \)[/tex]
4. Step 4: [tex]\( 39 - 4 \div 4 \)[/tex]
- Division first: [tex]\( 4 \div 4 = 1 \)[/tex]
- So, it simplifies to: [tex]\( 39 - 1 = 38 \)[/tex]
5. Step 5: [tex]\( 35 \div 4 \)[/tex]
- This step is incorrect because the previous result was [tex]\( 38 \)[/tex], not [tex]\( 35 \)[/tex].
6. Step 6: [tex]\( \frac{35}{4} = 8.75 \)[/tex]
- The calculation here is correct, but it’s based on an incorrect previous step.
Therefore, Step 5 is the incorrect step. The result of the previous step should have been [tex]\( 38 \)[/tex], not [tex]\( 35 \)[/tex].
1. Step 1: [tex]\( -3(2 - 3 \cdot 5) - 4 \div 4 \)[/tex]
- Calculate inside the parentheses first: [tex]\( 2 - 3 \cdot 5 = 2 - 15 = -13 \)[/tex]
- So, it simplifies to: [tex]\( -3(-13) - 4 \div 4 \)[/tex]
2. Step 2: [tex]\( -3(2 - 15) - 4 \div 4 \)[/tex]
- Already simplified from Step 1, it should be: [tex]\( -3(-13) - 4 \div 4 \)[/tex]
3. Step 3: [tex]\( -3(-13) - 4 \div 4 \)[/tex]
- Multiply [tex]\(-3\)[/tex] and [tex]\(-13\)[/tex]: [tex]\( -3 \cdot (-13) = 39 \)[/tex]
- So, it simplifies to: [tex]\( 39 - 4 \div 4 \)[/tex]
4. Step 4: [tex]\( 39 - 4 \div 4 \)[/tex]
- Division first: [tex]\( 4 \div 4 = 1 \)[/tex]
- So, it simplifies to: [tex]\( 39 - 1 = 38 \)[/tex]
5. Step 5: [tex]\( 35 \div 4 \)[/tex]
- This step is incorrect because the previous result was [tex]\( 38 \)[/tex], not [tex]\( 35 \)[/tex].
6. Step 6: [tex]\( \frac{35}{4} = 8.75 \)[/tex]
- The calculation here is correct, but it’s based on an incorrect previous step.
Therefore, Step 5 is the incorrect step. The result of the previous step should have been [tex]\( 38 \)[/tex], not [tex]\( 35 \)[/tex].