Find [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex].

[tex]\[
\left[\begin{array}{l}
x_1 \\
x_2
\end{array}\right] = \left[\begin{array}{rr}
3 & 1 \\
-3 & 1
\end{array}\right] \left[\begin{array}{r}
-2 \\
1
\end{array}\right]
\][/tex]

[tex]\[
\begin{array}{l}
x_1 = \square \\
x_2 = \square
\end{array}
\][/tex]



Answer :

To find [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex] from the given matrix and vector multiplication, we will multiply the matrix by the vector step-by-step.

The given matrix is:
[tex]\[ \begin{bmatrix} 3 & 1 \\ -3 & 1 \end{bmatrix} \][/tex]

The given vector is:
[tex]\[ \begin{bmatrix} -2 \\ 1 \end{bmatrix} \][/tex]

We need to find the product of the matrix and the vector, which results in a new vector. To do this, we perform the matrix multiplication as follows:

1. Calculate [tex]\( x_1 \)[/tex]:
[tex]\[ x_1 = 3 \cdot (-2) + 1 \cdot 1 \][/tex]

2. Calculate [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = -3 \cdot (-2) + 1 \cdot 1 \][/tex]

Let's solve these step-by-step.

For [tex]\( x_1 \)[/tex]:
[tex]\[ x_1 = 3 \cdot (-2) + 1 \cdot 1 = -6 + 1 = -5 \][/tex]

For [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = -3 \cdot (-2) + 1 \cdot 1 = 6 + 1 = 7 \][/tex]

Thus, the resulting vector is:
[tex]\[ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -5 \\ 7 \end{bmatrix} \][/tex]

Therefore, we have:
[tex]\[ \begin{array}{l} x_1 = -5 \\ x_2 = 7 \end{array} \][/tex]