The diagram represents the polynomial [tex]4x^2 + 23x - 72[/tex]. What is the factored form of [tex]4x^2 + 23x - 72[/tex]?

[tex]\[
\begin{array}{|c|c|c|}
\hline
& ? & ? \\
\hline
? & 4x^2 & 32x \\
\hline
? & -9x & -72 \\
\hline
\end{array}
\][/tex]

A. [tex](4x + 8)(x - 9)[/tex]

B. [tex](4x - 8)(x + 9)[/tex]

C. [tex](4x + 9)(x - 8)[/tex]

D. [tex](4x - 9)(x + 8)[/tex]



Answer :

To factor the polynomial [tex]\(4x^2 + 23x - 72\)[/tex], we'll start by identifying which of the given options correctly represent the polynomial in its factored form. Let's analyze the options step by step.

Given options are:
1. [tex]\((4x + 8)(x - 9)\)[/tex]
2. [tex]\((4x - 8)(x + 9)\)[/tex]
3. [tex]\((4x + 9)(x - 8)\)[/tex]
4. [tex]\((4x - 9)(x + 8)\)[/tex]

We are trying to determine which one of these is the correct factored form of the polynomial [tex]\(4x^2 + 23x - 72\)[/tex].

Now let's verify the correctness of each option by expanding them:

### Option 1: [tex]\((4x + 8)(x - 9)\)[/tex]

[tex]\[ (4x + 8)(x - 9) \][/tex]
[tex]\[ = 4x(x - 9) + 8(x - 9) \][/tex]
[tex]\[ = 4x^2 - 36x + 8x - 72 \][/tex]
[tex]\[ = 4x^2 - 28x - 72 \][/tex]

This does not match [tex]\(4x^2 + 23x - 72\)[/tex].

### Option 2: [tex]\((4x - 8)(x + 9)\)[/tex]

[tex]\[ (4x - 8)(x + 9) \][/tex]
[tex]\[ = 4x(x + 9) - 8(x + 9) \][/tex]
[tex]\[ = 4x^2 + 36x - 8x - 72 \][/tex]
[tex]\[ = 4x^2 + 28x - 72 \][/tex]

This does not match [tex]\(4x^2 + 23x - 72\)[/tex].

### Option 3: [tex]\((4x + 9)(x - 8)\)[/tex]

[tex]\[ (4x + 9)(x - 8) \][/tex]
[tex]\[ = 4x(x - 8) + 9(x - 8) \][/tex]
[tex]\[ = 4x^2 - 32x + 9x - 72 \][/tex]
[tex]\[ = 4x^2 - 23x - 72 \][/tex]

This does not match [tex]\(4x^2 + 23x - 72\)[/tex].

### Option 4: [tex]\((4x - 9)(x + 8)\)[/tex]

[tex]\[ (4x - 9)(x + 8) \][/tex]
[tex]\[ = 4x(x + 8) - 9(x + 8) \][/tex]
[tex]\[ = 4x^2 + 32x - 9x - 72 \][/tex]
[tex]\[ = 4x^2 + 23x - 72 \][/tex]

This matches the original polynomial [tex]\(4x^2 + 23x - 72\)[/tex].

Therefore, the correct factored form of the polynomial [tex]\(4x^2 + 23x - 72\)[/tex] is:

[tex]\[\boxed{(4x - 9)(x + 8)}\][/tex]

And this corresponds to option 4.