Sure, let's solve the given formula for [tex]\( b \)[/tex].
The formula for the volume [tex]\( V \)[/tex] of a triangular prism is:
[tex]\[ V = \frac{1}{2} a b h \][/tex]
We need to solve this equation for [tex]\( b \)[/tex]. Follow these steps:
1. Start with the original formula:
[tex]\[ V = \frac{1}{2} a b h \][/tex]
2. Multiply both sides of the equation by 2 to eliminate the fraction:
[tex]\[ 2V = a b h \][/tex]
3. Divide both sides of the equation by [tex]\( a h \)[/tex] to isolate [tex]\( b \)[/tex]:
[tex]\[ b = \frac{2V}{a h} \][/tex]
So, the formula for [tex]\( b \)[/tex] in terms of [tex]\( V \)[/tex], [tex]\( a \)[/tex], and [tex]\( h \)[/tex] is:
[tex]\[ b = \frac{2V}{a h} \][/tex]
Therefore, the correct answer is option B:
[tex]\[ b=\frac{2V}{a h} \][/tex]