Which equation is equivalent to

[tex]\[ -2(3x + 3) = 8 - 5(4 - 2x)? \][/tex]

A. [tex]\(16x = 6\)[/tex]

B. [tex]\(-16x = 6\)[/tex]

C. [tex]\(-16x = 18\)[/tex]

D. [tex]\(16x = -18\)[/tex]



Answer :

Let's start by simplifying both sides of the equation step by step.

Given the equation:
[tex]\[ -2(3x + 3) = 8 - 5(4 - 2x) \][/tex]

First, distribute the constants through the parentheses.

For the left side:
[tex]\[ -2(3x + 3) = -2 \cdot 3x + (-2) \cdot 3 = -6x - 6 \][/tex]

For the right side:
[tex]\[ 8 - 5(4 - 2x) = 8 - 5 \cdot 4 + 5 \cdot 2x = 8 - 20 + 10x \][/tex]

Combine like terms on the right side:
[tex]\[ 8 - 20 + 10x = -12 + 10x \][/tex]

Now the equation is:
[tex]\[ -6x - 6 = -12 + 10x \][/tex]

To solve for [tex]\( x \)[/tex], isolate the terms involving [tex]\( x \)[/tex] on one side of the equation and the constants on the other.

Add [tex]\( 6x \)[/tex] to both sides:
[tex]\[ -6x - 6 + 6x = -12 + 10x + 6x \][/tex]
[tex]\[ -6 = -12 + 16x \][/tex]

Add 12 to both sides:
[tex]\[ -6 + 12 = -12 + 12 + 16x \][/tex]
[tex]\[ 6 = 16x \][/tex]

Finally, divide both sides by 16:
[tex]\[ \frac{6}{16} = x \][/tex]
[tex]\[ x = \frac{6}{16} \][/tex]
Simplify the fraction:
[tex]\[ x = \frac{3}{8} \][/tex]

So, the equivalent equation of the form [tex]\( ax = b \)[/tex] is:
[tex]\[ 16x = 6 \][/tex]

Thus, the equivalent equation is:
[tex]\[ 16x = 6 \][/tex]

The correct answer is:
[tex]\[ \boxed{16x = 6} \][/tex]