Solve [tex]$14x - 7y = 21$[/tex] for [tex]y[/tex].

A. [tex]$y = 2x - 3$[/tex]
B. [tex][tex]$y = 14x + 3$[/tex][/tex]
C. [tex]$y = -14x + 21$[/tex]
D. [tex]$y = 2x - 21$[/tex]



Answer :

To solve the equation [tex]\(14x - 7y = 21\)[/tex] for [tex]\(y\)[/tex], follow these steps:

1. Isolate the term containing [tex]\(y\)[/tex]: Start by isolating the term [tex]\( -7y \)[/tex] on one side of the equation.

[tex]\[ 14x - 7y = 21 \][/tex]

2. Subtract [tex]\(14x\)[/tex] from both sides: To move [tex]\(14x\)[/tex] to the other side of the equation, subtract it from both sides.

[tex]\[ -7y = 21 - 14x \][/tex]

3. Rearrange the equation: Notice that we can rewrite the right side for clarity, but it remains untouched by the mathematical operation.

[tex]\[ -7y = -14x + 21 \][/tex]

4. Divide by [tex]\(-7\)[/tex]: To solve for [tex]\(y\)[/tex], divide every term on both sides of the equation by [tex]\(-7\)[/tex].

[tex]\[ y = \frac{-14x + 21}{-7} \][/tex]

5. Simplify the fraction: Simplify each term inside the fraction separately.

[tex]\[ y = \frac{-14x}{-7} + \frac{21}{-7} \][/tex]

[tex]\[ y = 2x - 3 \][/tex]

So, the solution is:

[tex]\[ y = 2x - 3 \][/tex]

Therefore, the correct answer is [tex]\( \boxed{2x - 3} \)[/tex], corresponding to option [tex]\( \text{A.} \ y = 2x - 3 \)[/tex].