Select the correct answer.

What is the nuclear binding energy for uranium-238 in joules? Assume the following:

Mass defect [tex]=3.2008 \times 10^{-27}[/tex] kilograms.

Use [tex]E=mc^2[/tex], with [tex]c=3 \times 10^8 \, \text{m/s}[/tex].

A. [tex]0.28807 \times 10^{-12}[/tex] joules
B. [tex]2.8807 \times 10^{-12}[/tex] joules
C. [tex]2.8807 \times 10^{-10}[/tex] joules
D. [tex]2.8807 \times 10^{-8}[/tex] joules
E. [tex]3.2008 \times 10^{27}[/tex] joules



Answer :

To find the nuclear binding energy for uranium-238, you would use the famous equation from Einstein's theory of relativity, which is [tex]\( E = mc^2 \)[/tex].

Here is a detailed, step-by-step solution:

1. Identify the given values:
- Mass defect ([tex]\(m\)[/tex]) = [tex]\(3.2008 \times 10^{-27}\)[/tex] kilograms.
- Speed of light ([tex]\(c\)[/tex]) = [tex]\(3 \times 10^8\)[/tex] meters per second.

2. Substitute the given values into the equation [tex]\( E = mc^2 \)[/tex]:
- [tex]\( E = (3.2008 \times 10^{-27} \, \text{kg}) \times (3 \times 10^8 \, \text{m/s})^2 \)[/tex].

3. Calculate the speed of light squared:
- [tex]\( c^2 = (3 \times 10^8 \, \text{m/s})^2 = 9 \times 10^{16} \, \text{m}^2/\text{s}^2 \)[/tex].

4. Multiply the mass defect by [tex]\( c^2 \)[/tex]:
- [tex]\( E = 3.2008 \times 10^{-27} \, \text{kg} \times 9 \times 10^{16} \, \text{m}^2/\text{s}^2 \)[/tex].

5. Perform the multiplication:
- [tex]\( E = 3.2008 \times 9 \times 10^{-27 + 16} \, \text{kg} \cdot \text{m}^2/\text{s}^2 \)[/tex].
- [tex]\( E = 28.8072 \times 10^{-11} \, \text{J} \)[/tex].

6. Adjust the scientific notation to match the form of the possible answers:
- [tex]\( E = 2.88072 \times 10^{-10} \, \text{J}\)[/tex].

Therefore, the correct answer is:
C. [tex]\(2.8807 \times 10^{-10}\)[/tex] joules.