Solve [tex]|2x - 9| \geq 13[/tex].

A. [tex]x \leq -2[/tex] or [tex]x \geq 10[/tex]
B. [tex]x \leq -2[/tex] or [tex]x \geq 11[/tex]
C. [tex]x \leq -2[/tex] or [tex]x \geq 12[/tex]
D. [tex]x \leq 3[/tex] or [tex]x \geq 9[/tex]



Answer :

To solve the inequality [tex]\( |2x - 9| \geq 13 \)[/tex], we need to consider the definition of absolute value and split it into two separate inequalities.

The absolute value inequality [tex]\( |2x - 9| \geq 13 \)[/tex] can be rewritten as:
1. [tex]\( 2x - 9 \geq 13 \)[/tex]
2. [tex]\( 2x - 9 \leq -13 \)[/tex]

Let's solve each inequality step by step.

### Solving [tex]\( 2x - 9 \geq 13 \)[/tex]

1. Add 9 to both sides:
[tex]\[ 2x - 9 + 9 \geq 13 + 9 \][/tex]
which simplifies to:
[tex]\[ 2x \geq 22 \][/tex]

2. Divide both sides by 2:
[tex]\[ \frac{2x}{2} \geq \frac{22}{2} \][/tex]
which simplifies to:
[tex]\[ x \geq 11 \][/tex]

### Solving [tex]\( 2x - 9 \leq -13 \)[/tex]

1. Add 9 to both sides:
[tex]\[ 2x - 9 + 9 \leq -13 + 9 \][/tex]
which simplifies to:
[tex]\[ 2x \leq -4 \][/tex]

2. Divide both sides by 2:
[tex]\[ \frac{2x}{2} \leq \frac{-4}{2} \][/tex]
which simplifies to:
[tex]\[ x \leq -2 \][/tex]

### Combining the Solutions

From the above steps, we have two ranges for [tex]\( x \)[/tex]:
1. [tex]\( x \geq 11 \)[/tex]
2. [tex]\( x \leq -2 \)[/tex]

This means that [tex]\( x \)[/tex] must either be less than or equal to [tex]\(-2\)[/tex] or greater than or equal to [tex]\(11\)[/tex].

Therefore, the solution to the inequality [tex]\( |2x - 9| \geq 13 \)[/tex] is:
[tex]\[ x \leq -2 \text{ or } x \geq 11 \][/tex]

The correct answer is:
B. [tex]\( x \leq -2 \)[/tex] or [tex]\( x \geq 11 \)[/tex]