A solid sphere is cut into 8 equal wedges. The volume of each wedge is [tex]$V=\frac{1}{6} \pi r^3$[/tex]. Solve the formula for [tex]$r$[/tex].

A. [tex]$r=\sqrt[3]{\frac{6 V}{\pi}}$[/tex]

B. [tex][tex]$r=\sqrt[3]{6 V-\pi}$[/tex][/tex]

C. [tex]$r=\sqrt[3]{\frac{5}{6 V}}$[/tex]

D. [tex]$r=\sqrt[3]{6 V(\pi)}$[/tex]



Answer :

To solve the formula [tex]\( V = \frac{1}{6} \pi r^3 \)[/tex] for [tex]\( r \)[/tex], we can follow these steps:

1. Isolate [tex]\( r \)[/tex] in the formula:

Start with the volume formula:
[tex]\[ V = \frac{1}{6} \pi r^3 \][/tex]

2. Eliminate the fraction:

Multiply both sides of the equation by 6 to get rid of the fraction:
[tex]\[ 6V = \pi r^3 \][/tex]

3. Isolate [tex]\( r^3 \)[/tex]:

Divide both sides by [tex]\( \pi \)[/tex] to solve for [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{6V}{\pi} \][/tex]

4. Solve for [tex]\( r \)[/tex]:

Take the cube root of both sides to isolate [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt[3]{\frac{6V}{\pi}} \][/tex]

Thus, the correct answer is:

A. [tex]\( r = \sqrt[3]{\frac{6 V}{\pi}} \)[/tex]