Use the equation [tex]$y=\sqrt[3]{27 x-54}+5$[/tex].

Which is an equivalent equation of the form [tex]$y=a \sqrt{x-h}+k$[/tex]?

A. [tex][tex]$y=-27 \sqrt[3]{x+2}+5$[/tex][/tex]
B. [tex]$y=-3 \sqrt[3]{x+2}+5$[/tex]
C. [tex]$y=3 \sqrt[3]{x-2}+5$[/tex]
D. [tex][tex]$y=27 \sqrt[3]{x-2}+5$[/tex][/tex]



Answer :

To transform the given equation [tex]\( y = \sqrt[3]{27x - 54} + 5 \)[/tex] into an equivalent equation of the form [tex]\( y = a \sqrt[3]{x - h} + k \)[/tex], we can follow these steps:

1. Identify and rewrite the term inside the cube root:
Given [tex]\( y = \sqrt[3]{27x - 54} + 5 \)[/tex], we recognize that the term inside the cube root, [tex]\( 27x - 54 \)[/tex], can be rewritten in a factored form.

2. Factor the expression inside the cube root:
[tex]\[ 27x - 54 = 27(x - 2) \][/tex]

3. Substitute the factored expression back into the original equation:
[tex]\[ y = \sqrt[3]{27(x - 2)} + 5 \][/tex]

4. Simplify the cube root:
Since [tex]\( 27 \)[/tex] is a perfect cube ([tex]\( 27 = 3^3 \)[/tex]), we can simplify the cube root:
[tex]\[ \sqrt[3]{27(x - 2)} = \sqrt[3]{27} \cdot \sqrt[3]{x - 2} = 3 \sqrt[3]{x - 2} \][/tex]

5. Rewrite the equation with the simplified cube root:
[tex]\[ y = 3 \sqrt[3]{x - 2} + 5 \][/tex]

Therefore, the equivalent equation in the form [tex]\( y = a \sqrt[3]{x - h} + k \)[/tex] is:
[tex]\[ y = 3 \sqrt[3]{x - 2} + 5 \][/tex]

Among the given options, the correct choice is:
[tex]\[ y = 3 \sqrt[3]{x - 2} + 5 \][/tex]