What is the missing coefficient of the [tex]$x$-term[/tex] of the product [tex]$(-x-5)^2$[/tex] after it has been simplified?

A. [tex]-25[/tex]
B. [tex]-10[/tex]
C. 10
D. 25



Answer :

To find the missing coefficient of the [tex]$x$[/tex]-term in the expression [tex]$(-x-5)^2$[/tex] after it has been simplified, we need to follow these steps:

1. Start with the given expression:
[tex]\[ (-x-5)^2 \][/tex]

2. Expand the expression using the distributive property (also known as the FOIL method for binomials):
[tex]\[ (-x-5) \cdot (-x-5) \][/tex]

3. Apply the distributive property:
[tex]\[ (-x-5)(-x-5) = (-x)(-x) + (-x)(-5) + (-5)(-x) + (-5)(-5) \][/tex]

4. Multiply the terms inside the parenthesis:
[tex]\[ (-x)(-x) = x^2 \][/tex]
[tex]\[ (-x)(-5) = 5x \][/tex]
[tex]\[ (-5)(-x) = 5x \][/tex]
[tex]\[ (-5)(-5) = 25 \][/tex]

5. Combine like terms to simplify the expression:
[tex]\[ x^2 + 5x + 5x + 25 \][/tex]

6. Add the like terms:
[tex]\[ x^2 + 10x + 25 \][/tex]

The simplified expression is:
[tex]\[ x^2 + 10x + 25 \][/tex]

From this simplified expression, we can see that the coefficient of the [tex]$x$[/tex]-term is [tex]\(10\)[/tex].

Therefore, the missing coefficient of the [tex]$x$[/tex]-term is [tex]\(10\)[/tex].

The correct answer is:
[tex]\[ \boxed{10} \][/tex]