Maria exercises for [tex]1 \frac{5}{6}[/tex] hours every Saturday. If she runs for [tex]\frac{3}{4}[/tex] of that time, how many hours does she run each Saturday?

A. [tex]1 \frac{1}{12}[/tex]
B. [tex]1 \frac{1}{8}[/tex]
C. [tex]1 \frac{3}{8}[/tex]
D. [tex]1 \frac{1}{2}[/tex]



Answer :

Sure, let's work through the problem step-by-step.

1. Determine Maria's total exercise time:
Maria exercises for [tex]\(1 \frac{5}{6}\)[/tex] hours every Saturday. To work with this more easily, we'll convert it to an improper fraction and then to a decimal.

[tex]\[ 1 \frac{5}{6} = 1 + \frac{5}{6} = \frac{6}{6} + \frac{5}{6} = \frac{11}{6} \][/tex]

Converting this to a decimal,

[tex]\[ \frac{11}{6} \approx 1.8333333333333335 \text{ hours} \][/tex]

2. Determine the fraction of time spent running:
Maria runs for [tex]\(\frac{3}{4}\)[/tex] of her total exercise time. To find out how long that is, we need to multiply her total exercise time by [tex]\(\frac{3}{4}\)[/tex].

[tex]\[ \text{Running time} = 1.8333333333333335 \times \frac{3}{4} \][/tex]

3. Perform the multiplication:

[tex]\[ 1.8333333333333335 \times \frac{3}{4} = 1.375 \text{ hours} \][/tex]

4. Convert the running time to a mixed number:
To present the running time in a way suitable for the multiple-choice answers:

[tex]\[ 1.375 \text{ hours} = 1 + 0.375 \text{ hours} = 1 + \frac{3}{8} \text{ hours} = 1 \frac{3}{8} \text{ hours} \][/tex]

Thus, Maria runs for [tex]\(1 \frac{3}{8}\)[/tex] hours each Saturday.

Therefore, the correct answer is:

C [tex]\(1 \frac{3}{8}\)[/tex].