Maria gathered the data in the table. She finds the line of best fit to be [tex]y = 2.78x - 4.4[/tex].

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & -2 \\
\hline
2 & 1.3 \\
\hline
3 & 4.2 \\
\hline
4 & 7.3 \\
\hline
5 & 8.9 \\
\hline
\end{tabular}

What is the residual value when [tex]x = 4[/tex]?

A. [tex]$-6.72$[/tex]

B. [tex]$-0.58$[/tex]

C. 0.58

D. 6.72



Answer :

First, let's understand what a residual value is. A residual value is the difference between an observed value and the predicted value given by the line of best fit. Mathematically, it's given by:

[tex]\[ \text{residual} = y_{\text{actual}} - y_{\text{predicted}} \][/tex]

Now, we are given the line of best fit equation:

[tex]\[ y = 2.78x - 4.4 \][/tex]

We need to find the predicted value of [tex]\( y \)[/tex] when [tex]\( x = 4 \)[/tex].

1. Substitute [tex]\( x = 4 \)[/tex] into the line of best fit equation to find the predicted value [tex]\( y_{\text{predicted}} \)[/tex]:

[tex]\[ y_{\text{predicted}} = 2.78(4) - 4.4 \][/tex]

Using the values provided for [tex]\( y_{\text{predicted}} \)[/tex]:

[tex]\[ y_{\text{predicted}} \approx 6.72 \][/tex]

Next, we use the actual value of [tex]\( y \)[/tex] from the table when [tex]\( x = 4 \)[/tex]:

[tex]\[ y_{\text{actual}} = 7.3 \][/tex]

2. Calculate the residual using the actual and predicted values when [tex]\( x = 4 \)[/tex]:

[tex]\[ \text{residual} = y_{\text{actual}} - y_{\text{predicted}} \][/tex]

Substitute the known values:

[tex]\[ \text{residual} = 7.3 - 6.72 \][/tex]

Using the values provided for the residual:

[tex]\[ \text{residual} \approx 0.58 \][/tex]

Therefore, the residual value when [tex]\( x = 4 \)[/tex] is [tex]\( \boxed{0.58} \)[/tex].