Which equation has an [tex]$a$[/tex]-value of 1, a [tex]$b$[/tex]-value of -3, and a [tex]$c$[/tex]-value of -5?

A. [tex]$0 = -3x - 5 + x^2$[/tex]
B. [tex]$0 = x - 3 - 5x^2$[/tex]
C. [tex]$0 = 3x - 5 - x^2$[/tex]
D. [tex]$0 = -3x + 5 - x^2$[/tex]



Answer :

Let's examine each of the given equations to determine which one has an [tex]\( a \)[/tex]-value of 1, a [tex]\( b \)[/tex]-value of -3, and a [tex]\( c \)[/tex]-value of -5. These values correspond to the coefficients in a quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex].

1. The first equation is:
[tex]\[ 0 = -3x - 5 + x^2 \][/tex]
Rearranging this, we get:
[tex]\[ x^2 - 3x - 5 = 0 \][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -3 \)[/tex], and [tex]\( c = -5 \)[/tex].

2. The second equation is:
[tex]\[ 0 = x - 3 - 5x^2 \][/tex]
Rearranging this, we get:
[tex]\[ -5x^2 + x - 3 = 0 \][/tex]
Here, [tex]\( a = -5 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -3 \)[/tex].

3. The third equation is:
[tex]\[ 0 = 3x - 5 - x^2 \][/tex]
Rearranging this, we get:
[tex]\[ -x^2 + 3x - 5 = 0 \][/tex]
Here, [tex]\( a = -1 \)[/tex], [tex]\( b = 3 \)[/tex], and [tex]\( c = -5 \)[/tex].

4. The fourth equation is:
[tex]\[ 0 = -3x + 5 - x^2 \][/tex]
Rearranging this, we get:
[tex]\[ -x^2 - 3x + 5 = 0 \][/tex]
Here, [tex]\( a = -1 \)[/tex], [tex]\( b = -3 \)[/tex], and [tex]\( c = 5 \)[/tex].

Comparing the coefficients, we see that the first equation matches the desired values:
[tex]\[ a = 1, b = -3, \text{ and } c = -5 \][/tex]

Therefore, the equation which has an [tex]\( a \)[/tex]-value of 1, a [tex]\( b \)[/tex]-value of -3, and a [tex]\( c \)[/tex]-value of -5 is:
[tex]\[ 0 = -3x - 5 + x^2 \][/tex]

The answer is the first equation.