The equation of a line is [tex]y = 1.5x - 2[/tex]. What are its slope and [tex]y[/tex]-intercept?

A. slope [tex]= 1.5[/tex] and [tex]y[/tex]-intercept [tex]= -2[/tex]
B. slope [tex]= 1.5[/tex] and [tex]y[/tex]-intercept [tex]= 2[/tex]
C. slope [tex]= 2[/tex] and [tex]y[/tex]-intercept [tex]= 1.5[/tex]
D. slope [tex]= -2[/tex] and [tex]y[/tex]-intercept [tex]= 1.5[/tex]



Answer :

To determine the slope and the [tex]\( y \)[/tex]-intercept of the linear equation [tex]\( y = 1.5x - 2 \)[/tex], let's follow these steps:

1. Identify the given equation format:
The equation [tex]\( y = 1.5x - 2 \)[/tex] is in the slope-intercept form of a linear equation, which is generally given by:
[tex]\[ y = mx + b \][/tex]
where [tex]\( m \)[/tex] represents the slope and [tex]\( b \)[/tex] represents the [tex]\( y \)[/tex]-intercept.

2. Extract the slope:
From the given equation, compare it with the slope-intercept form:
[tex]\[ y = 1.5x - 2 \][/tex]
Here, the coefficient of [tex]\( x \)[/tex] corresponds to the slope [tex]\( m \)[/tex]. Therefore, the slope [tex]\( m \)[/tex] is:
[tex]\[ m = 1.5 \][/tex]

3. Extract the [tex]\( y \)[/tex]-intercept:
The term that is constant (without the variable [tex]\( x \)[/tex]) corresponds to the [tex]\( y \)[/tex]-intercept [tex]\( b \)[/tex]. In the given equation:
[tex]\[ y = 1.5x - 2 \][/tex]
The [tex]\( y \)[/tex]-intercept [tex]\( b \)[/tex] is:
[tex]\[ b = -2 \][/tex]

4. Match the findings with the given options:
We have found that the slope [tex]\( m \)[/tex] is [tex]\( 1.5 \)[/tex] and the [tex]\( y \)[/tex]-intercept [tex]\( b \)[/tex] is [tex]\( -2 \)[/tex]. Matching these with the given options:
[tex]\[ \text{A. slope } = 1.5 \text{ and } y\text{-intercept } = -2 \][/tex]
This is the correct choice.

So, the slope and the [tex]\( y \)[/tex]-intercept of the line are:
[tex]\[ \text{Slope } = 1.5 \quad \text{and} \quad y\text{-intercept} = -2 \][/tex]

Hence, the correct answer is:
[tex]\[ \text{A. slope } = 1.5 \text{ and } y\text{-intercept } = -2 \][/tex]