Simplify the expression [tex]-3(x+3)^2-3+3x[/tex]. What is the simplified expression in standard form?

A. [tex]-3x^2-18x-27[/tex]
B. [tex]-3x^2-15x-30[/tex]
C. [tex]-3x^2+3x+6[/tex]
D. [tex]-3x^2+3x-30[/tex]



Answer :

To simplify the expression [tex]\(-3(x+3)^2 - 3 + 3x\)[/tex] and present it in standard form, we can follow these steps:

1. Expand [tex]\((x+3)^2\)[/tex]:

The term [tex]\((x+3)^2\)[/tex] can be expanded using the binomial formula:
[tex]\[ (x+3)^2 = x^2 + 6x + 9 \][/tex]

So, replace [tex]\((x+3)^2\)[/tex] with this expanded form:
[tex]\[ -3(x^2 + 6x + 9) - 3 + 3x \][/tex]

2. Distribute the [tex]\(-3\)[/tex] across the terms inside the parentheses:

Distribute [tex]\(-3\)[/tex] through [tex]\(x^2 + 6x + 9\)[/tex]:
[tex]\[ -3(x^2 + 6x + 9) = -3x^2 - 18x - 27 \][/tex]

Now, plug this result back into the expression:
[tex]\[ -3x^2 - 18x - 27 - 3 + 3x \][/tex]

3. Combine like terms:

Combine the constants and the linear terms:
[tex]\[ -3x^2 - 18x + 3x - 27 - 3 \][/tex]

Simplify by combining [tex]\(-18x\)[/tex] and [tex]\(3x\)[/tex]:
[tex]\[ -18x + 3x = -15x \][/tex]

Combine the constants [tex]\(-27\)[/tex] and [tex]\(-3\)[/tex]:
[tex]\[ -27 - 3 = -30 \][/tex]

So, the expression simplifies to:
[tex]\[ -3x^2 - 15x - 30 \][/tex]

4. Conclusion:

The given expression [tex]\(-3(x+3)^2 - 3 + 3x\)[/tex] simplifies to the standard form:
[tex]\[ -3x^2 - 15x - 30 \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{-3x^2 - 15x - 30} \][/tex]