Which is a zero of the quadratic function [tex]$f(x)=4x^2+24x+11$[/tex]?

A. [tex]$x=-9.25$[/tex]
B. [tex][tex]$x=-5.5$[/tex][/tex]
C. [tex]$x=0.5$[/tex]
D. [tex]$x=3.25$[/tex]



Answer :

To find the zero of the quadratic function [tex]\( f(x) = 4x^2 + 24x + 11 \)[/tex], we need to determine which of the given values makes the function equal zero.

The given candidates are:
- [tex]\( x = -9.25 \)[/tex]
- [tex]\( x = -5.5 \)[/tex]
- [tex]\( x = 0.5 \)[/tex]
- [tex]\( x = 3.25 \)[/tex]

We'll evaluate [tex]\( f(x) \)[/tex] for each of these values and see which one yields [tex]\( f(x) = 0 \)[/tex].

1. For [tex]\( x = -9.25 \)[/tex]:
[tex]\[ f(-9.25) = 4(-9.25)^2 + 24(-9.25) + 11 \][/tex]
Calculate this to see if it equals 0.

2. For [tex]\( x = -5.5 \)[/tex]:
[tex]\[ f(-5.5) = 4(-5.5)^2 + 24(-5.5) + 11 \][/tex]
Calculate this to check if [tex]\( f(-5.5) \)[/tex] equals 0.

3. For [tex]\( x = 0.5 \)[/tex]:
[tex]\[ f(0.5) = 4(0.5)^2 + 24(0.5) + 11 \][/tex]
Calculate to check if it results in 0.

4. For [tex]\( x = 3.25 \)[/tex]:
[tex]\[ f(3.25) = 4(3.25)^2 + 24(3.25) + 11 \][/tex]
Calculate this expression to see if it equals 0.

After checking all these calculations, we find that:

For [tex]\( x = -5.5 \)[/tex]:
[tex]\[ f(-5.5) = 4(-5.5)^2 + 24(-5.5) + 11 = 0 \][/tex]

Therefore, the zero of the quadratic function [tex]\( f(x) = 4x^2 + 24x + 11 \)[/tex] is [tex]\( x = -5.5 \)[/tex].