Which is a zero of the quadratic function [tex]f(x)=4x^2+24x+11?[/tex]

A. [tex]x=-9.25[/tex]
B. [tex]x=-5.5[/tex]
C. [tex]x=0.5[/tex]
D. [tex]x=3.25[/tex]



Answer :

To determine which value is a zero of the quadratic function [tex]\( f(x) = 4x^2 + 24x + 11 \)[/tex], we need to substitute each given potential zero into the function and see if the result is zero. A zero of a function is a value of [tex]\( x \)[/tex] for which [tex]\( f(x) = 0 \)[/tex].

Let's evaluate the function at each of the given values:

1. Substituting [tex]\( x = -9.25 \)[/tex]:
[tex]\[ f(-9.25) = 4(-9.25)^2 + 24(-9.25) + 11 \][/tex]
[tex]\[ = 4(85.5625) - 222 + 11 \][/tex]
[tex]\[ = 342.25 - 222 + 11 \][/tex]
[tex]\[ = 342.25 - 211 \][/tex]
[tex]\[ = 131.25 \][/tex]
Since [tex]\( f(-9.25) \neq 0 \)[/tex], -9.25 is not a zero of the function.

2. Substituting [tex]\( x = -5.5 \)[/tex]:
[tex]\[ f(-5.5) = 4(-5.5)^2 + 24(-5.5) + 11 \][/tex]
[tex]\[ = 4(30.25) - 132 + 11 \][/tex]
[tex]\[ = 121 - 132 + 11 \][/tex]
[tex]\[ = 121 - 121 \][/tex]
[tex]\[ = 0 \][/tex]
Since [tex]\( f(-5.5) = 0 \)[/tex], -5.5 is a zero of the function.

3. Substituting [tex]\( x = 0.5 \)[/tex]:
[tex]\[ f(0.5) = 4(0.5)^2 + 24(0.5) + 11 \][/tex]
[tex]\[ = 4(0.25) + 12 + 11 \][/tex]
[tex]\[ = 1 + 12 + 11 \][/tex]
[tex]\[ = 24 \][/tex]
Since [tex]\( f(0.5) \neq 0 \)[/tex], 0.5 is not a zero of the function.

4. Substituting [tex]\( x = 3.25 \)[/tex]:
[tex]\[ f(3.25) = 4(3.25)^2 + 24(3.25) + 11 \][/tex]
[tex]\[ = 4(10.5625) + 78 + 11 \][/tex]
[tex]\[ = 42.25 + 78 + 11 \][/tex]
[tex]\[ = 131.25 \][/tex]
Since [tex]\( f(3.25) \neq 0 \)[/tex], 3.25 is not a zero of the function.

So, the zero of the quadratic function [tex]\( f(x) = 4x^2 + 24x + 11 \)[/tex] from the given options is:
[tex]\[ x = -5.5 \][/tex]