The variables [tex]$A, B$, and [tex]$C$[/tex][/tex] represent polynomials where [tex]$A=x+1, B=x^2+2x-1$, and $C=2x$[/tex]. What is [tex][tex]$AB+C$[/tex][/tex] in simplest form?

A. [tex]x^3+3x-1[/tex]

B. [tex]x^3+4x-1[/tex]

C. [tex]x^3+3x^2+3x-1[/tex]

D. [tex]x^3+2x^2-x+1[/tex]



Answer :

To find the expression [tex]\( A B + C \)[/tex] in its simplest form, we have to follow a series of polynomial operations on the given polynomials [tex]\( A = x + 1 \)[/tex], [tex]\( B = x^2 + 2x - 1 \)[/tex], and [tex]\( C = 2x \)[/tex].

1. First, find the product [tex]\( A \cdot B \)[/tex].
[tex]\[ A = x + 1 \][/tex]
[tex]\[ B = x^2 + 2x - 1 \][/tex]

To get [tex]\( A \cdot B \)[/tex], distribute each term in [tex]\( A \)[/tex] through [tex]\( B \)[/tex]:
[tex]\[ A \cdot B = (x + 1)(x^2 + 2x - 1) \][/tex]

This can be expanded as follows:
[tex]\[ = x(x^2 + 2x - 1) + 1(x^2 + 2x - 1) \][/tex]

Simplifying each part:
[tex]\[ = x^3 + 2x^2 - x + x^2 + 2x - 1 \][/tex]

Combine like terms:
[tex]\[ = x^3 + 3x^2 + x - 1 \][/tex]

2. Next, add the polynomial [tex]\( C \)[/tex] to the product [tex]\( A \cdot B \)[/tex]:
[tex]\[ C = 2x \][/tex]

So, add [tex]\( 2x \)[/tex] to [tex]\( x^3 + 3x^2 + x - 1 \)[/tex]:
[tex]\[ A \cdot B + C = x^3 + 3x^2 + x - 1 + 2x \][/tex]

Combining the like terms:
[tex]\[ = x^3 + 3x^2 + 3x - 1 \][/tex]

Therefore, the simplified form of the expression [tex]\( A B + C \)[/tex] is:
[tex]\[ x^3 + 3x^2 + 3x - 1 \][/tex]

Among the given choices, the correct answer is:
[tex]\[ \boxed{x^3 + 3x^2 + 3x - 1} \][/tex]