The image shows a geometric representation of the function [tex]f(x) = x^2 - 2x - 6[/tex] written in standard form.

What is this function written in vertex form?

A. [tex]f(x) = (x - 1)^2 - 7[/tex]
B. [tex]f(x) = (x + 1)^2 - 7[/tex]
C. [tex]f(x) = (x - 1)^2 - 5[/tex]
D. [tex]f(x) = (x + 1)^2 - 5[/tex]



Answer :

To convert the function [tex]\( f(x) = x^2 - 2x - 6 \)[/tex] from standard form to vertex form, we need to complete the square. Here's a step-by-step solution:

1. Start with the standard form of the quadratic function:
[tex]\[ f(x) = x^2 - 2x - 6 \][/tex]

2. Isolate the quadratic and linear terms:
[tex]\[ f(x) = (x^2 - 2x) - 6 \][/tex]

3. Complete the square:
- To complete the square, we need to add and subtract the same value inside the parenthesis. This value is the square of half the coefficient of [tex]\( x \)[/tex].
- The coefficient of [tex]\( x \)[/tex] is [tex]\(-2\)[/tex], so half of that is [tex]\(-1\)[/tex], and its square is [tex]\((-1)^2 = 1\)[/tex].

Adding and subtracting this value inside the parenthesis:
[tex]\[ f(x) = (x^2 - 2x + 1) - 1 - 6 \][/tex]

4. Rewrite the quadratic expression as a square of a binomial:
- The expression [tex]\( x^2 - 2x + 1 \)[/tex] can be written as [tex]\( (x - 1)^2 \)[/tex].

So, we have:
[tex]\[ f(x) = (x - 1)^2 - 1 - 6 \][/tex]

5. Combine the constants:
[tex]\[ f(x) = (x - 1)^2 - 7 \][/tex]

Therefore, the function [tex]\( f(x) = x^2 - 2x - 6 \)[/tex] written in vertex form is [tex]\( f(x) = (x - 1)^2 - 7 \)[/tex].

Thus, the correct answer is:

[tex]\[ f(x) = (x - 1)^2 - 7 \][/tex]