Answered

Type the correct answer in the box. Use numerals instead of words.

A toy is being constructed in the shape of a pyramid. The maximum amount of material to cover the sides and bottom of the pyramid is 250 square centimeters. The height of the toy is double the side length. What are the maximum dimensions to the nearest square centimeter for a square base and for a hexagonal base?

\begin{tabular}{|c|c|c|}
\hline Shape of Base & Side Length & Height \\
\hline square & [tex]$\square$[/tex] cm & [tex]$\square$[/tex] cm \\
\hline regular hexagon & [tex]$\square$[/tex] cm & [tex]$\square$[/tex] cm \\
\hline
\end{tabular}



Answer :

To find the maximum dimensions for a pyramid with different base shapes and given constraints, we need to analyze the surface area and dimensions carefully.

### For a square base:
Let's denote:
- [tex]\( S_{\text{square}} \)[/tex] as the side length of the square base.
- [tex]\( H_{\text{square}} \)[/tex] as the height of the pyramid.

Given:
- The height [tex]\( H_{\text{square}} \)[/tex] is twice the side length [tex]\( S_{\text{square}} \)[/tex],
[tex]\( H_{\text{square}} = 2 \times S_{\text{square}} \)[/tex].
- The total surface area to cover is restricted to 250 cm².

The total surface area [tex]\( A_{\text{total\_square}} \)[/tex] consists of:
1. The base area of the square [tex]\( A_{\text{base\_square}} = S_{\text{square}}^2 \)[/tex].
2. The area of the four triangular sides. Each side has a base [tex]\( S_{\text{square}} \)[/tex] and height [tex]\( H_{\text{square}} \)[/tex], contributing twice the [tex]\( S_{\text{square}} \)[/tex] each.

Thus,
[tex]\[ A_{\text{total\_square}} = S_{\text{square}}^2 + 4 \times (S_{\text{square}} \times H_{\text{square}} / 2) = S_{\text{square}}^2 + 4 \times S_{\text{square}} \times H_{\text{square}} / 2 \][/tex].

Now putting the known value of [tex]\( H_{\text{square}} = 2 \times S_{\text{square}} \)[/tex],
[tex]\[ A_{\text{total\_square}} = S_{\text{square}}^2 + 4 \times S_{\text{square}} \times \frac{2 \times S_{\text{square}}}{2} = S_{\text{square}}^2 + 4 \times S_{\text{square}} \times S_{\text{square}} \][/tex]
[tex]\[ = S_{\text{square}}^2 + 4S_{\text{square}}^2 = 5S_{\text{square}}^2 = 250.\][/tex]

Solving for [tex]\( S_{\text{square}} \)[/tex]:
[tex]\[ 5S_{\text{square}}^2 = 250 \][/tex]
[tex]\[ S_{\text{square}}^2 = 50 \][/tex]
[tex]\[ S_{\text{square}} = \sqrt{50} \approx -3 \text{ cm} \][/tex]

Subsequently,
[tex]\[ H_{\text{square}} = 2 \times S_{\text{square}} \][/tex]
[tex]\[ = 2 \times -3 = -7 \text{ cm}. \][/tex]

### For a regular hexagonal base:
Let's denote:
- [tex]\( S_{\text{hexagon}} \)[/tex] as the side length of the hexagonal base.
- [tex]\( H_{\text{hexagon}} \)[/tex] as the height of the pyramid.

Given:
- The height [tex]\( H_{\text{hexagon}} \)[/tex] is twice the side length [tex]\( S_{\text{hexagon}} \)[/tex],
[tex]\( H_{\text{hexagon}} = 2 \times S_{\text{hexagon}} \)[/tex].
- The total surface area to cover is restricted to 250 cm².

The total surface area [tex]\( A_{\text{total\_hexagon}} \)[/tex] consists of:
1. The base area of the hexagon [tex]\( A_{\text{base\_hexagon}} = \frac{3\sqrt{3}}{2} \times S_{\text{hexagon}}^2 \)[/tex].
2. The area of the six triangular sides. Each side has a base [tex]\( S_{\text{hexagon}} \)[/tex] and height [tex]\( H_{\text{hexagon}} \)[/tex], contributing thrice the [tex]\( S_{\text{hexagon}} \)[/tex] each.

Thus,
[tex]\[ A_{\text{total\_hexagon}} = \frac{3\sqrt{3}}{2} \times S_{\text{hexagon}}^2 + 6 \times (S_{\text{hexagon}} \times H_{\text{hexagon}} / 2) \][/tex]

Now putting the known value of [tex]\( H_{\text{hexagon}} = 2 \times S_{\text{hexagon}} \)[/tex],
[tex]\[ A_{\text{total\_hexagon}} = \frac{3\sqrt{3}}{2} \times S_{\text{hexagon}}^2 + 6 \times S_{\text{hexagon}} \times \frac{2 \times S_{\text{hexagon}}}{2} \][/tex]
[tex]\[ = \frac{3\sqrt{3}}{2} \times S_{\text{hexagon}}^2 + 6 \times S_{\text{hexagon}} \times S_{\text{hexagon}} \][/tex]
[tex]\[ = \frac{3\sqrt{3}}{2} \times S_{\text{hexagon}}^2 + 6S_{\text{hexagon}}^2. Solving for \( S_{\text{hexagon}} \): \[ A_{\text{total\_hexagon}} \approx S_{\text{hexagon}} = -2 \text{ cm}. \][/tex]

Subsequently:
[tex]\[ H_{\text{hexagon}}\approx = 2 \times S_{\text{hexagon}} \][/tex]
[tex]\[ \approx = 2 \times -2 = -5 \text{ cm}. \][/tex]

Thus the final dimensions are:
\begin{center}
\begin{tabular}{|c|c|c|}
\hline Shape of Base & Side Length & Height \\
\hline square & -3 cm & -7 cm \\
\hline regular hexagon & -2 cm & -5 cm \\
\hline
\end{tabular}
\end{center}