Drag each number to the correct location in the table.

Classify the real numbers as rational or irrational numbers.

[tex]\[ 3 \sqrt{25} \][/tex]
[tex]\[ -\frac{11}{151} \][/tex]
[tex]\[ 1 . \overline{1625} \][/tex]
[tex]\[ 5.15603418923 \ldots \][/tex]
[tex]\[ \sqrt{256} \][/tex]
[tex]\[ \sqrt{141} \][/tex]

\begin{tabular}{|l|l|}
\hline
Rational Numbers & Irrational Numbers \\
\hline
& \\
& \\
& \\
& \\
\hline
\end{tabular}



Answer :

Let's classify each number as either rational or irrational based on their numerical values and properties:

1. [tex]\(\3 \cdot \sqrt{25}\)[/tex]
- Calculating [tex]\(\sqrt{25}\)[/tex] gives 5, and multiplying by 3 gives 15. Since 15 is a terminating decimal, it is a rational number.

2. [tex]\(-\frac{11}{151}\)[/tex]
- This is a fraction representing a quotient of two integers. Though it's a small number, it is indeed a rational number as the division of two integers (where the denominator is not zero) is always rational.

3. [tex]\(1.1625\)[/tex]
- [tex]\(1.1625\)[/tex] is given as a rational number because it is a terminating decimal.

4. [tex]\(5.15603418923 \ldots\)[/tex]
- This number appears to be a non-repeating, non-terminating decimal, which is indicative of an irrational number.

5. [tex]\(\sqrt{256}\)[/tex]
- Calculating [tex]\(\sqrt{256}\)[/tex] gives 16, which is a whole number. Thus, it is a rational number.

6. [tex]\(\sqrt{141}\)[/tex]
- The square root of 141 is not a perfect square, which results in an irrational number.

Now we can classify these numbers correctly in the table:

[tex]\[ \begin{tabular}{|l|l|} \hline \text{Rational Numbers} & \text{Irrational Numbers} \\ \hline 15.0 & 11.874342087037917 \\ -0.0728476821192053 & \\ 1.1625 & \\ 5.15603418923 & \\ 16.0 & \\ \hline \end{tabular} \][/tex]

Hence, filling the table with the numbers classified:

[tex]\[ \begin{tabular}{|l|l|} \hline \text{Rational Numbers} & \text{Irrational Numbers} \\ \hline 15.0 & 11.874342087037917 \\ -0.0728476821192053 & \\ 1.1625 & \\ 5.15603418923 & \\ 16.0 & \\ \hline \end{tabular} \][/tex]

The rational numbers are [tex]\(15.0\)[/tex], [tex]\(-0.0728476821192053\)[/tex], [tex]\(1.1625\)[/tex], [tex]\(5.15603418923\)[/tex], and [tex]\(16.0\)[/tex]. The irrational number is [tex]\(11.874342087037917\)[/tex].