3. The formula [tex]$Q = M C T$[/tex], where [tex]$Q$[/tex] is heat flow, [tex][tex]$M$[/tex][/tex] is mass, [tex]$C$[/tex] is specific heat, and [tex]$T$[/tex] is change of temperature, is used to calculate heat flow.

Solve this formula for [tex][tex]$T$[/tex][/tex].

A. [tex]$T = Q - M C$[/tex]
B. [tex]$T = Q + M C$[/tex]
C. [tex][tex]$T = Q M C$[/tex][/tex]
D. [tex]$T = \frac{Q}{M C}$[/tex]



Answer :

Sure, let's solve the given formula [tex]\( Q = M \cdot C \cdot T \)[/tex] for [tex]\( T \)[/tex].

The original formula provided is:
[tex]\[ Q = M \cdot C \cdot T \][/tex]

To solve for [tex]\( T \)[/tex], we need to isolate [tex]\( T \)[/tex] on one side of the equation. Here is the step-by-step process:

1. Start with the original equation:
[tex]\[ Q = M \cdot C \cdot T \][/tex]

2. To isolate [tex]\( T \)[/tex], divide both sides of the equation by [tex]\( M \cdot C \)[/tex]:
[tex]\[ \frac{Q}{M \cdot C} = \frac{M \cdot C \cdot T}{M \cdot C} \][/tex]

3. The [tex]\( M \cdot C \)[/tex] on the right side will cancel out, leaving:
[tex]\[ \frac{Q}{M \cdot C} = T \][/tex]

4. Therefore, the formula solved for [tex]\( T \)[/tex] is:
[tex]\[ T = \frac{Q}{M \cdot C} \][/tex]

Now, we can check the given options to find that the correct answer is:
[tex]\[ T = \frac{Q}{M \cdot C} \][/tex]

So, the correct option is:
[tex]\[ T = \frac{Q}{M \cdot C} \][/tex]