Sure, let's solve the given formula [tex]\( Q = M \cdot C \cdot T \)[/tex] for [tex]\( T \)[/tex].
The original formula provided is:
[tex]\[ Q = M \cdot C \cdot T \][/tex]
To solve for [tex]\( T \)[/tex], we need to isolate [tex]\( T \)[/tex] on one side of the equation. Here is the step-by-step process:
1. Start with the original equation:
[tex]\[ Q = M \cdot C \cdot T \][/tex]
2. To isolate [tex]\( T \)[/tex], divide both sides of the equation by [tex]\( M \cdot C \)[/tex]:
[tex]\[ \frac{Q}{M \cdot C} = \frac{M \cdot C \cdot T}{M \cdot C} \][/tex]
3. The [tex]\( M \cdot C \)[/tex] on the right side will cancel out, leaving:
[tex]\[ \frac{Q}{M \cdot C} = T \][/tex]
4. Therefore, the formula solved for [tex]\( T \)[/tex] is:
[tex]\[ T = \frac{Q}{M \cdot C} \][/tex]
Now, we can check the given options to find that the correct answer is:
[tex]\[ T = \frac{Q}{M \cdot C} \][/tex]
So, the correct option is:
[tex]\[ T = \frac{Q}{M \cdot C} \][/tex]