Solve for [tex]$t$[/tex]:

[tex]d = r t[/tex]

A. [tex]t = d r[/tex]

B. [tex]t = \frac{r}{d}[/tex]

C. [tex]t = \frac{d}{r}[/tex]

D. [tex]t = d + r[/tex]



Answer :

To solve for [tex]\( t \)[/tex] in the equation [tex]\( d = r t \)[/tex], we need to isolate [tex]\( t \)[/tex]. Follow these steps:

1. Start with the given equation:
[tex]\[ d = r t \][/tex]

2. Isolate [tex]\( t \)[/tex]:
To isolate [tex]\( t \)[/tex], divide both sides of the equation by [tex]\( r \)[/tex]. This gives:
[tex]\[ t = \frac{d}{r} \][/tex]

Therefore, the solution to the equation [tex]\( d = r t \)[/tex] is:
[tex]\[ t = \frac{d}{r} \][/tex]

Given the provided options:
1. [tex]\( t = d r \)[/tex]
2. [tex]\( t = \frac{r}{d} \)[/tex]
3. [tex]\( t = \frac{d}{r} \)[/tex]
4. [tex]\( t = d + r \)[/tex]

Option 3, [tex]\( t = \frac{d}{r} \)[/tex], is the correct answer.