To solve for [tex]\( t \)[/tex] in the equation [tex]\( d = r t \)[/tex], we need to isolate [tex]\( t \)[/tex]. Follow these steps:
1. Start with the given equation:
[tex]\[
d = r t
\][/tex]
2. Isolate [tex]\( t \)[/tex]:
To isolate [tex]\( t \)[/tex], divide both sides of the equation by [tex]\( r \)[/tex]. This gives:
[tex]\[
t = \frac{d}{r}
\][/tex]
Therefore, the solution to the equation [tex]\( d = r t \)[/tex] is:
[tex]\[
t = \frac{d}{r}
\][/tex]
Given the provided options:
1. [tex]\( t = d r \)[/tex]
2. [tex]\( t = \frac{r}{d} \)[/tex]
3. [tex]\( t = \frac{d}{r} \)[/tex]
4. [tex]\( t = d + r \)[/tex]
Option 3, [tex]\( t = \frac{d}{r} \)[/tex], is the correct answer.