The number of fish in a lake can be modeled by the exponential regression equation [tex]y=14.08 \cdot 2.08^x[/tex], where [tex]x[/tex] represents the year.

Which is the best prediction for the number of fish in year 7? Round your answer to the nearest whole number.

A. 168
B. 2372
C. 2050
D. 205



Answer :

To predict the number of fish in the lake in year 7 using the exponential regression equation [tex]\( y = 14.08 \cdot 2.08^x \)[/tex], follow these steps:

1. Identify the given function:
[tex]\[ y = 14.08 \cdot 2.08^x \][/tex]
Here, [tex]\( y \)[/tex] represents the population of fish, [tex]\( 14.08 \)[/tex] is the initial population, [tex]\( 2.08 \)[/tex] is the growth rate, and [tex]\( x \)[/tex] is the year.

2. Plug in the value for the year [tex]\( x = 7 \)[/tex]:
[tex]\[ y = 14.08 \cdot 2.08^7 \][/tex]

3. Calculate [tex]\( 2.08^7 \)[/tex]:
[tex]\[ 2.08^7 \approx 168.378 \][/tex]

4. Multiply the initial population by this result:
[tex]\[ y = 14.08 \cdot 168.378 \approx 2371.62488981 \][/tex]

5. Round the result to the nearest whole number:
[tex]\[ 2371.62488981 \rightarrow 2372 \][/tex]

Therefore, the best prediction for the number of fish in year 7, rounded to the nearest whole number, is:

[tex]\[ \boxed{2372} \][/tex]

Thus, the correct answer is:
B. 2372