Solve for [tex]$h$[/tex]:

[tex]\[ A = \frac{1}{2} b h \][/tex]

A. [tex] h = \frac{A}{2b} [/tex]

B. [tex] h = \frac{A}{b}\left(\frac{1}{2}\right) [/tex]

C. [tex] h = 2Ab [/tex]

D. [tex] h = \frac{2A}{b} [/tex]



Answer :

To solve for [tex]\( h \)[/tex] in the equation [tex]\( A = \frac{1}{2} b h \)[/tex], follow these steps:

1. Start with the given equation:
[tex]\[ A = \frac{1}{2} b h \][/tex]

2. Isolate [tex]\( h \)[/tex]:
To do this, we need to get rid of the fraction [tex]\(\frac{1}{2}\)[/tex]. This can be accomplished by multiplying both sides of the equation by 2.

[tex]\[ 2A = b h \][/tex]

3. Solve for [tex]\( h \)[/tex]:
Now, divide both sides by [tex]\( b \)[/tex] to isolate [tex]\( h \)[/tex].

[tex]\[ h = \frac{2A}{b} \][/tex]

Thus, the correct expression for [tex]\( h \)[/tex] is:
[tex]\[ h = \frac{2A}{b} \][/tex]

Therefore, from the given options, the correct choice is:
[tex]\[ \boxed{h = \frac{2A}{b}} \][/tex]

This corresponds to option 4.