Answer :
To find the difference between two given polynomials [tex]\( P(x) \)[/tex] and [tex]\( Q(x) \)[/tex], follow these steps:
First, identify the polynomials:
[tex]\[ P(x) = x^4 + x^3 + x^2 + x \][/tex]
[tex]\[ Q(x) = x^4 - x^3 + x^2 - x \][/tex]
Next, subtract [tex]\( Q(x) \)[/tex] from [tex]\( P(x) \)[/tex]:
[tex]\[ P(x) - Q(x) = (x^4 + x^3 + x^2 + x) - (x^4 - x^3 + x^2 - x) \][/tex]
Distribute the negative sign across the terms of [tex]\( Q(x) \)[/tex]:
[tex]\[ P(x) - Q(x) = x^4 + x^3 + x^2 + x - x^4 + x^3 - x^2 + x \][/tex]
Combine like terms:
[tex]\[ P(x) - Q(x) = (x^4 - x^4) + (x^3 + x^3) + (x^2 - x^2) + (x + x) \][/tex]
Simplify each set of like terms:
[tex]\[ P(x) - Q(x) = 0 + 2x^3 + 0 + 2x \][/tex]
So, the difference of the polynomials is:
[tex]\[ 2x^3 + 2x \][/tex]
Therefore, the correct answer is:
[tex]\[ 2x^3 + 2x \][/tex]
First, identify the polynomials:
[tex]\[ P(x) = x^4 + x^3 + x^2 + x \][/tex]
[tex]\[ Q(x) = x^4 - x^3 + x^2 - x \][/tex]
Next, subtract [tex]\( Q(x) \)[/tex] from [tex]\( P(x) \)[/tex]:
[tex]\[ P(x) - Q(x) = (x^4 + x^3 + x^2 + x) - (x^4 - x^3 + x^2 - x) \][/tex]
Distribute the negative sign across the terms of [tex]\( Q(x) \)[/tex]:
[tex]\[ P(x) - Q(x) = x^4 + x^3 + x^2 + x - x^4 + x^3 - x^2 + x \][/tex]
Combine like terms:
[tex]\[ P(x) - Q(x) = (x^4 - x^4) + (x^3 + x^3) + (x^2 - x^2) + (x + x) \][/tex]
Simplify each set of like terms:
[tex]\[ P(x) - Q(x) = 0 + 2x^3 + 0 + 2x \][/tex]
So, the difference of the polynomials is:
[tex]\[ 2x^3 + 2x \][/tex]
Therefore, the correct answer is:
[tex]\[ 2x^3 + 2x \][/tex]