Analyze and sketch a graph of the function. Find any intercepts, relative extrema, points of inflection, and asymptotes. Use a graphing utility to verify your results. (If an answer does not exist, enter DNE.)

[tex]\[ r(x) = \frac{5 - 4x}{x - 3} \][/tex]

Intercepts (smaller [tex]\( x \)[/tex]-value):
[tex]\[
(x, y) = (\square) \\
(x, y) = (\square) \\
(x, y) = (\square) \\
(x, y) = (\square) \\
(x, y) = (\square)
\][/tex]

Find the equations of the asymptotes. (Enter your answers as a comma-separated list of equations. If an answer does not exist, enter DNE.)

[tex]\(\square\)[/tex]



Answer :

To analyze and sketch the graph of the function [tex]\( r(x) = \frac{5 - 4x}{x - 3} \)[/tex], we will find the intercepts, relative extrema, points of inflection, and asymptotes.

### 1. Finding Intercepts

Y-Intercept:
To find the y-intercept, we set [tex]\( x = 0 \)[/tex]:
[tex]\[ r(0) = \frac{5 - 4(0)}{0 - 3} = \frac{5}{-3} = -\frac{5}{3} \][/tex]
So, the y-intercept is [tex]\((0, -\frac{5}{3})\)[/tex].

X-Intercept:
To find the x-intercept, we set [tex]\( r(x) = 0 \)[/tex]:
[tex]\[ \frac{5 - 4x}{x - 3} = 0 \][/tex]
The numerator must equal zero:
[tex]\[ 5 - 4x = 0 \][/tex]
[tex]\[ 4x = 5 \][/tex]
[tex]\[ x = \frac{5}{4} = 1.25 \][/tex]
So, the x-intercept is [tex]\((1.25, 0)\)[/tex].

### 2. Relative Extrema

There are no relative extrema for this function.

### 3. Points of Inflection

There are no points of inflection for this function.

### 4. Asymptotes

Vertical Asymptote:
A vertical asymptote occurs where the function is undefined, which happens when the denominator is zero:
[tex]\[ x - 3 = 0 \][/tex]
[tex]\[ x = 3 \][/tex]
So, the vertical asymptote is [tex]\( x = 3 \)[/tex].

Horizontal Asymptote:
To find the horizontal asymptote, we analyze the behavior as [tex]\( x \to \infty \)[/tex]:
[tex]\[ \lim_{x \to \infty} \frac{5 - 4x}{x - 3} = \lim_{x \to \infty} \frac{-4x}{x} = -4 \][/tex]
So, the horizontal asymptote is [tex]\( y = -4 \)[/tex].

### Summary of Findings:

- Intercepts:
- [tex]\( (0, -\frac{5}{3}) \)[/tex]
- [tex]\( (1.25, 0) \)[/tex]

- Relative Extrema: None

- Points of Inflection: None

- Asymptotes:
- Vertical: [tex]\( x = 3 \)[/tex]
- Horizontal: [tex]\( y = -4 \)[/tex]

So, the table of intercepts can be filled out as:

[tex]\[ \begin{array}{l} \text{intercept (smaller } x \text{-value) } \quad (x, y)=(0, -5/3) \\ (x, y)=(1.25, 0) \\ (x, y)=\text{DNE} \\ (x, y)=\text{DNE} \\ (x, y)=\text{DNE} \\ \end{array} \][/tex]

The equations of the asymptotes are:
[tex]\[ x = 3, y = -4 \][/tex]

To confirm our findings, you can use a graphing utility. The graph should display the intercepts at [tex]\((0, -\frac{5}{3})\)[/tex] and [tex]\((1.25, 0)\)[/tex], and the asymptotes [tex]\( x = 3 \)[/tex] and [tex]\( y = -4 \)[/tex].