To simplify the expression [tex]\( 4 + 12x - 6x + 3x - 8 \)[/tex], follow these steps:
1. Identify and Combine Like Terms:
- Start by grouping together the terms that contain [tex]\( x \)[/tex]:
[tex]\( 12x - 6x + 3x \)[/tex].
- Next, group the constant terms:
[tex]\( 4 \)[/tex] and [tex]\( -8 \)[/tex].
2. Simplify the Terms with [tex]\( x \)[/tex]:
- Combine the coefficients of the [tex]\( x \)[/tex] terms:
[tex]\[
12x - 6x + 3x = (12 - 6 + 3)x = 9x
\][/tex]
3. Simplify the Constant Terms:
- Combine the constants:
[tex]\[
4 - 8 = -4
\][/tex]
4. Combine the Simplified Terms:
- Put together the simplified terms involving [tex]\( x \)[/tex] and the constants:
[tex]\[
9x - 4
\][/tex]
Thus, the simplified form of the expression [tex]\( 4 + 12x - 6x + 3x - 8 \)[/tex] is [tex]\( 9x - 4 \)[/tex].