What is the solution to [tex]|x+2|\ \textless \ 1[/tex]?

A. [tex]1\ \textless \ x\ \textless \ 3[/tex]
B. [tex]-3\ \textless \ x\ \textless \ -1[/tex]
C. [tex]x\ \textgreater \ 3[/tex] or [tex]x\ \textless \ 1[/tex]
D. [tex]x\ \textgreater \ -1[/tex] or [tex]x\ \textless \ -3[/tex]



Answer :

To solve the inequality [tex]\( |x + 2| < 1 \)[/tex], we need to understand the properties of absolute value functions.

The absolute value inequality [tex]\( |x + 2| < 1 \)[/tex] means the expression inside the absolute value, [tex]\( x + 2 \)[/tex], lies within a distance of 1 unit from 0 on the number line. This can be expressed without the absolute value as:

[tex]\[ -1 < x + 2 < 1 \][/tex]

Next, we solve this compound inequality by isolating [tex]\( x \)[/tex]. To do this, we subtract 2 from all parts of the inequality:

[tex]\[ -1 - 2 < x + 2 - 2 < 1 - 2 \][/tex]

Simplifying each part, we get:

[tex]\[ -3 < x < -1 \][/tex]

Thus, the solution to the inequality [tex]\( |x + 2| < 1 \)[/tex] is the interval:

[tex]\[ -3 < x < -1 \][/tex]

Looking at the answer choices provided:

A. [tex]\( 1 < x < 3 \)[/tex] - Incorrect, since this interval does not satisfy the inequality.

B. [tex]\( -3 < x < -1 \)[/tex] - Correct, as it matches our solution.

C. [tex]\( x > 3 \)[/tex] or [tex]\( x < 1 \)[/tex] - Incorrect, since this describes regions outside our interval.

D. [tex]\( x > -1 \)[/tex] or [tex]\( x < -3 \)[/tex] - Incorrect, since this also describes regions outside our interval.

Therefore, the correct answer is:

B. [tex]\( -3 < x < -1 \)[/tex]