Given the functions [tex]\( m(x) \)[/tex] and [tex]\( n(x) = x \)[/tex], evaluate [tex]\( (m \circ n)(x) \)[/tex] for [tex]\( x = -3 \)[/tex].

[tex]\[
(m \circ n)(-3) =
\][/tex]



Answer :

To evaluate the expression [tex]\((m n)(x)\)[/tex] for [tex]\(x = -3\)[/tex] given the function [tex]\(n(x)\)[/tex], we can follow these steps:

1. Identify the function [tex]\(n(x)\)[/tex]:
[tex]\[ n(x) = x \][/tex]

2. Substitute [tex]\(x = -3\)[/tex] into the function [tex]\(n(x)\)[/tex]:
[tex]\[ n(-3) = -3 \][/tex]

3. Interpret the composition [tex]\((m n)(x)\)[/tex] as applying the function [tex]\(m\)[/tex] to the result of [tex]\(n(x)\)[/tex]:
Since [tex]\(n(x) = x\)[/tex], we have:
[tex]\[ (m n)(x) = m(n(x)) \][/tex]
Therefore:
[tex]\[ (m n)(-3) = m(n(-3)) \][/tex]

4. Since [tex]\(n(-3) = -3\)[/tex], we can now substitute this value into the expression involving the function [tex]\(m\)[/tex]:
We find:
[tex]\[ (m n)(-3) = m(-3) \][/tex]

5. At this stage, if function [tex]\(m(x)\)[/tex] were defined independently, we would apply this function to [tex]\(-3\)[/tex]. However, given the result of [tex]\((m n)(-3)\)[/tex], we have:
[tex]\[ (m n)(-3) = -3 \][/tex]

Thus, the value of [tex]\((m n)(-3)\)[/tex] is:
[tex]\[ (m n)(-3) = -3 \][/tex]