Answer :
To evaluate the expression [tex]\((m n)(x)\)[/tex] for [tex]\(x = -3\)[/tex] given the function [tex]\(n(x)\)[/tex], we can follow these steps:
1. Identify the function [tex]\(n(x)\)[/tex]:
[tex]\[ n(x) = x \][/tex]
2. Substitute [tex]\(x = -3\)[/tex] into the function [tex]\(n(x)\)[/tex]:
[tex]\[ n(-3) = -3 \][/tex]
3. Interpret the composition [tex]\((m n)(x)\)[/tex] as applying the function [tex]\(m\)[/tex] to the result of [tex]\(n(x)\)[/tex]:
Since [tex]\(n(x) = x\)[/tex], we have:
[tex]\[ (m n)(x) = m(n(x)) \][/tex]
Therefore:
[tex]\[ (m n)(-3) = m(n(-3)) \][/tex]
4. Since [tex]\(n(-3) = -3\)[/tex], we can now substitute this value into the expression involving the function [tex]\(m\)[/tex]:
We find:
[tex]\[ (m n)(-3) = m(-3) \][/tex]
5. At this stage, if function [tex]\(m(x)\)[/tex] were defined independently, we would apply this function to [tex]\(-3\)[/tex]. However, given the result of [tex]\((m n)(-3)\)[/tex], we have:
[tex]\[ (m n)(-3) = -3 \][/tex]
Thus, the value of [tex]\((m n)(-3)\)[/tex] is:
[tex]\[ (m n)(-3) = -3 \][/tex]
1. Identify the function [tex]\(n(x)\)[/tex]:
[tex]\[ n(x) = x \][/tex]
2. Substitute [tex]\(x = -3\)[/tex] into the function [tex]\(n(x)\)[/tex]:
[tex]\[ n(-3) = -3 \][/tex]
3. Interpret the composition [tex]\((m n)(x)\)[/tex] as applying the function [tex]\(m\)[/tex] to the result of [tex]\(n(x)\)[/tex]:
Since [tex]\(n(x) = x\)[/tex], we have:
[tex]\[ (m n)(x) = m(n(x)) \][/tex]
Therefore:
[tex]\[ (m n)(-3) = m(n(-3)) \][/tex]
4. Since [tex]\(n(-3) = -3\)[/tex], we can now substitute this value into the expression involving the function [tex]\(m\)[/tex]:
We find:
[tex]\[ (m n)(-3) = m(-3) \][/tex]
5. At this stage, if function [tex]\(m(x)\)[/tex] were defined independently, we would apply this function to [tex]\(-3\)[/tex]. However, given the result of [tex]\((m n)(-3)\)[/tex], we have:
[tex]\[ (m n)(-3) = -3 \][/tex]
Thus, the value of [tex]\((m n)(-3)\)[/tex] is:
[tex]\[ (m n)(-3) = -3 \][/tex]