Evaluating the function [tex]\(\left(\frac{m}{n}\right)(x)\)[/tex] requires substituting the given value of [tex]\(x\)[/tex] into the function. Let's proceed step-by-step with that.
1. We start with the function [tex]\(\left(\frac{m}{n}\right)(x)\)[/tex], where [tex]\(m\)[/tex] and [tex]\(n\)[/tex] are constants, and [tex]\(x\)[/tex] is the variable.
2. We have the specific value [tex]\(x = -3\)[/tex].
3. Therefore, the expression we need to evaluate is [tex]\(\left(\frac{m}{n}\right)(-3)\)[/tex].
4. To find the value, recall that multiplying a constant function [tex]\(\left(\frac{m}{n}\right)\)[/tex] by [tex]\(x\)[/tex] implies we multiply [tex]\(\frac{m}{n}\)[/tex] by the value of [tex]\(x\)[/tex].
5. Given that [tex]\(m = 1\)[/tex] and [tex]\(n = 1\)[/tex], the fraction [tex]\(\frac{m}{n}\)[/tex] simplifies to [tex]\(1\)[/tex].
6. Therefore, substituting these values in, we get:
[tex]\[
\frac{1}{1} \cdot (-3) = 1 \cdot (-3)
\][/tex]
7. Simplifying this, we have:
[tex]\[
1 \cdot (-3) = -3
\][/tex]
Hence, the evaluation of [tex]\(\left(\frac{m}{n}\right)(-3)\)[/tex] results in [tex]\(-3\)[/tex].