Write the equation of a line in standard form that has [tex]\(x\)[/tex]-intercept [tex]\((-P, 0)\)[/tex] and [tex]\(y\)[/tex]-intercept [tex]\((0, R)\)[/tex].

A. [tex]\( R x - P y = -P R \)[/tex]

B. [tex]\( R x + P y = P R \)[/tex]

C. [tex]\( P x - R y = -P R \)[/tex]

D. [tex]\( P x - R y = P R \)[/tex]



Answer :

To write the equation of a line in standard form that has an [tex]\( x \)[/tex]-intercept of [tex]\((-P, 0)\)[/tex] and a [tex]\( y \)[/tex]-intercept of [tex]\((0, R)\)[/tex], we can follow these steps:

1. Identify the intercepts:
- [tex]\( x \)[/tex]-intercept: [tex]\((-P, 0)\)[/tex]
- [tex]\( y \)[/tex]-intercept: [tex]\((0, R)\)[/tex]

2. Determine the slope:
The slope [tex]\( m \)[/tex] of the line is calculated using the formula:
[tex]\[ m = \frac{\text{change in } y}{\text{change in } x} = \frac{R - 0}{0 - (-P)} = \frac{R}{P} \][/tex]

3. Write the equation in slope-intercept form:
The slope-intercept form of a line is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept. Given the slope [tex]\( \frac{R}{P} \)[/tex] and the y-intercept [tex]\( R \)[/tex]:
[tex]\[ y = \frac{R}{P} x + R \][/tex]

4. Convert to standard form (Ax + By = C):
To convert [tex]\( y = \frac{R}{P} x + R \)[/tex] to standard form, first eliminate the fraction by multiplying through by [tex]\( P \)[/tex]:
[tex]\[ Py = Rx + PR \][/tex]

Rearrange to get all terms on one side:
[tex]\[ Rx - Py = -PR \][/tex]

Therefore, the standard form equation with the intercepts provided is:
[tex]\[ Rx - Py = -PR \][/tex]

5. Compare with the given choices:
- [tex]\( R x - P y = -P R \)[/tex]
- [tex]\( R x + P y = P R \)[/tex]
- [tex]\( P x - R y = -P R \)[/tex]
- [tex]\( P x - R y = P R \)[/tex]

The equation [tex]\( Rx - Py = -PR \)[/tex] matches the first choice: [tex]\( R x - P y = -P R \)[/tex].

Hence, the correct answer is:
[tex]\[ \boxed{R x - P y = -P R} \][/tex]