Answered

10. Using the equation [tex]$y=2x+5$[/tex], what would the input need to be for an output of -15?

A. -25
B. -5
C. -35
D. -10



Answer :

To solve for the input [tex]\( x \)[/tex] that gives an output [tex]\( y = -15 \)[/tex] in the equation [tex]\( y = 2x + 5 \)[/tex], we will follow these steps:

1. Start with the given equation:
[tex]\[ y = 2x + 5 \][/tex]

2. Substitute the given output [tex]\( y = -15 \)[/tex] into the equation:
[tex]\[ -15 = 2x + 5 \][/tex]

3. To isolate [tex]\( 2x \)[/tex], subtract 5 from both sides of the equation:
[tex]\[ -15 - 5 = 2x \][/tex]
Simplifying this:
[tex]\[ -20 = 2x \][/tex]

4. Now, to solve for [tex]\( x \)[/tex], divide both sides of the equation by 2:
[tex]\[ x = \frac{-20}{2} \][/tex]
Simplifying this:
[tex]\[ x = -10 \][/tex]

Therefore, the input needed to achieve an output of [tex]\( y = -15 \)[/tex] is [tex]\(-10\)[/tex].

The correct answer is:
[tex]\[ -10 \][/tex]