Answer :
Certainly! Let's write the number [tex]\( 1.986 \times 10^6 \)[/tex] in standard notation step-by-step.
1. Understand the components:
- The number [tex]\( 1.986 \)[/tex] is the base.
- The exponent [tex]\( 6 \)[/tex] indicates that we need to move the decimal point 6 places to the right.
2. Move the decimal point:
- Start with the number [tex]\( 1.986 \)[/tex].
- Move the decimal point 6 places to the right:
- From [tex]\( 1.986 \)[/tex], moving the decimal one place to the right gives [tex]\( 19.86 \)[/tex].
- Moving it two places to the right gives [tex]\( 198.6 \)[/tex].
- Moving it three places to the right gives [tex]\( 1986.0 \)[/tex].
- Moving it four places to the right gives [tex]\( 19860.0 \)[/tex].
- Moving it five places to the right gives [tex]\( 198600.0 \)[/tex].
- Moving it six places to the right gives [tex]\( 1986000.0 \)[/tex].
Thus, the number [tex]\( 1.986 \times 10^6 \)[/tex] written in standard notation is [tex]\( 1986000.0 \)[/tex].
1. Understand the components:
- The number [tex]\( 1.986 \)[/tex] is the base.
- The exponent [tex]\( 6 \)[/tex] indicates that we need to move the decimal point 6 places to the right.
2. Move the decimal point:
- Start with the number [tex]\( 1.986 \)[/tex].
- Move the decimal point 6 places to the right:
- From [tex]\( 1.986 \)[/tex], moving the decimal one place to the right gives [tex]\( 19.86 \)[/tex].
- Moving it two places to the right gives [tex]\( 198.6 \)[/tex].
- Moving it three places to the right gives [tex]\( 1986.0 \)[/tex].
- Moving it four places to the right gives [tex]\( 19860.0 \)[/tex].
- Moving it five places to the right gives [tex]\( 198600.0 \)[/tex].
- Moving it six places to the right gives [tex]\( 1986000.0 \)[/tex].
Thus, the number [tex]\( 1.986 \times 10^6 \)[/tex] written in standard notation is [tex]\( 1986000.0 \)[/tex].