Answer :
To write the number [tex]\(4.702 \times 10^{-4}\)[/tex] in standard notation, we need to understand what the scientific notation represents.
1. Interpret the Exponent: The exponent [tex]\(-4\)[/tex] indicates that we need to move the decimal point 4 places to the left.
2. Move the Decimal Point:
- Start with the number 4.702.
- Move the decimal point 4 places to the left.
Let's move the decimal point:
[tex]\[ 4.702 \quad \rightarrow \quad 0.4702 \quad (one place to the left) \][/tex]
[tex]\[ 0.4702 \quad \rightarrow \quad 0.04702 \quad (two places to the left) \][/tex]
[tex]\[ 0.04702 \quad \rightarrow \quad 0.004702 \quad (three places to the left) \][/tex]
[tex]\[ 0.004702 \quad \rightarrow \quad 0.0004702 \quad (four places to the left) \][/tex]
3. Result: After moving the decimal point 4 places to the left, the number [tex]\(4.702 \times 10^{-4}\)[/tex] converts to [tex]\(0.0004702\)[/tex].
So, the number [tex]\(4.702 \times 10^{-4}\)[/tex] in standard notation is:
[tex]\[ 0.0004702 \][/tex]
1. Interpret the Exponent: The exponent [tex]\(-4\)[/tex] indicates that we need to move the decimal point 4 places to the left.
2. Move the Decimal Point:
- Start with the number 4.702.
- Move the decimal point 4 places to the left.
Let's move the decimal point:
[tex]\[ 4.702 \quad \rightarrow \quad 0.4702 \quad (one place to the left) \][/tex]
[tex]\[ 0.4702 \quad \rightarrow \quad 0.04702 \quad (two places to the left) \][/tex]
[tex]\[ 0.04702 \quad \rightarrow \quad 0.004702 \quad (three places to the left) \][/tex]
[tex]\[ 0.004702 \quad \rightarrow \quad 0.0004702 \quad (four places to the left) \][/tex]
3. Result: After moving the decimal point 4 places to the left, the number [tex]\(4.702 \times 10^{-4}\)[/tex] converts to [tex]\(0.0004702\)[/tex].
So, the number [tex]\(4.702 \times 10^{-4}\)[/tex] in standard notation is:
[tex]\[ 0.0004702 \][/tex]