Select the correct solution in each column of the table.

Solve this equation:
[tex]\[ \frac{3}{x} - \frac{x}{x+6} = \frac{18}{x^2 + 6x} \][/tex]

Examine the given table, and select the accurate number of each type of solution, as well as any viable solutions.

[tex]\[
\begin{tabular}{|c|c|c|}
\hline
\begin{tabular}{c}
Number of \\
Viable Solutions
\end{tabular} & \begin{tabular}{c}
Number of \\
Extraneous \\
Solutions
\end{tabular} & Viable Solution(s) \\
\hline
0 & 0 & $x=0$ \\
1 & 1 & $x=3$ \\
2 & 2 & $x=0, x=3$ \\
\hline
\end{tabular}
\][/tex]



Answer :

To find the correct solution for the given equation [tex]\( \frac{3}{x} - \frac{x}{x+6} = \frac{18}{x^2 + 6 x} \)[/tex], let's go through a thorough, step-by-step solution process.

### Step-by-Step Solution:

1. Rewrite the equation:
We start with the given equation:
[tex]\[ \frac{3}{x} - \frac{x}{x+6} = \frac{18}{x^2 + 6x} \][/tex]

2. Simplify the denominator on the right-hand side:
Notice that [tex]\( x^2 + 6x \)[/tex] can be factored:
[tex]\[ x^2 + 6x = x(x + 6) \][/tex]
So, the equation becomes:
[tex]\[ \frac{3}{x} - \frac{x}{x+6} = \frac{18}{x(x + 6)} \][/tex]

3. Combine fractions on the left-hand side:
To combine the fractions on the left-hand side, find a common denominator, which is [tex]\( x(x + 6) \)[/tex]:
[tex]\[ \frac{3(x + 6)}{x(x + 6)} - \frac{x^2}{x(x + 6)} \][/tex]
Simplify the numerators:
[tex]\[ \frac{3x + 18 - x^2}{x(x + 6)} \][/tex]
This can be rewritten as:
[tex]\[ \frac{18 + 3x - x^2}{x(x + 6)} \][/tex]

4. Set the combined form of the left-hand side equal to the right-hand side:
[tex]\[ \frac{18 + 3x - x^2}{x(x + 6)} = \frac{18}{x(x + 6)} \][/tex]

5. Equate the numerators:
Given that the denominators are the same, we equate the numerators:
[tex]\[ 18 + 3x - x^2 = 18 \][/tex]

6. Simplify the resulting equation:
Subtract 18 from both sides:
[tex]\[ 3x - x^2 = 0 \][/tex]
Factor the equation:
[tex]\[ x(3 - x) = 0 \][/tex]
This gives us two potential solutions:
[tex]\[ x = 0 \quad \text{or} \quad x = 3 \][/tex]

### Verification of Solutions:
We need to verify which solutions are viable by substituting them back into the original equation:

- Check [tex]\( x = 0 \)[/tex]:
[tex]\[ \frac{3}{0} - \frac{0}{0+6} \quad \text{is undefined (division by zero)} \][/tex]
Therefore, [tex]\( x = 0 \)[/tex] is an extraneous solution.

- Check [tex]\( x = 3 \)[/tex]:
Substitute [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{3}{3} - \frac{3}{3+6} = \frac{18}{3^2 + 6 \times 3} \][/tex]
Simplify:
[tex]\[ 1 - \frac{3}{9} = \frac{18}{27} \][/tex]
Simplify both sides:
[tex]\[ 1 - \frac{1}{3} = \frac{2}{3} \][/tex]
Which is true since:
[tex]\[ \frac{2}{3} = \frac{2}{3} \][/tex]
Therefore, [tex]\( x = 3 \)[/tex] is a viable solution.

### Conclusion:

From analyzing the steps, we have:
- Number of Viable Solutions: 1
- Number of Extraneous Solutions: 0
- Viable Solution(s): [tex]\( x = 3 \)[/tex]

The correct choice in the table is:
[tex]\[ \begin{tabular}{|c|c|c|} \hline \begin{tabular}{c} Number of \\ Viable Solutions \end{tabular} & \begin{tabular}{c} Number of \\ Extraneous \\ Solutions \end{tabular} & Viable Solution(s) \\ \hline 1 & 0 & x = 3 \\ \hline \end{tabular} \][/tex]