Select the correct answer.

Which equation can be derived by removing the denominators from this proportion?

[tex]\[ \frac{32}{x-8}=\frac{24}{x-10} \][/tex]

A. [tex]\( 32(x-10) = 24(x-8) \)[/tex]

B. [tex]\( 32x - 256 = 24x - 240 \)[/tex]

C. [tex]\( 32x - 320 = 24x - 192 \)[/tex]

D. [tex]\( 32x - 8 = 24x - 10 \)[/tex]



Answer :

Sure, let's solve the given proportion step-by-step to derive the correct equation.

Given:
[tex]\[ \frac{32}{x-8} = \frac{24}{x-10} \][/tex]

To remove the denominators, we can cross-multiply:

[tex]\[ 32 \cdot (x - 10) = 24 \cdot (x - 8) \][/tex]

Now, let's expand both sides of the equation:

[tex]\[ 32(x - 10) = 24(x - 8) \][/tex]

Expanding both sides gives:

[tex]\[ 32x - 320 = 24x - 192 \][/tex]

So, the equation derived after removing the denominators and simplifying is:

[tex]\[ 32x - 320 = 24x - 192 \][/tex]

Therefore, the correct answer is:

[tex]\[ 32x - 320 = 24x - 192 \][/tex]